
MATLAB® Builder™ NE

User’s Guide

R2012a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Builder™ NE User’s Guide

© COPYRIGHT 2002–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2006 Online only New for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 2.2 (Release 2007a)
September 2007 Online only Revised for Version 2.2.1 (Release 2007b)
March 2008 Online only Revised for Version 2.2.2 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.0.1 (Release 2009a)
September 2009 Online only Revised for Version 3.0.2 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.2 (Release 2010b)
April 2011 Online only Revised for Version 4.0 (Release 2011a)
September 2011 Online only Revised for Version 4.1 (Release 2011b)
March 2012 Online only Revised for Version 4.1.1 (Release 2012a)

Contents

Getting Started

1
Product Description . 1-2
Key Features . 1-2

Product Overview . 1-3
MATLAB® Compiler™ Extension . 1-3

MATLAB® Builder™ NE Prerequisites 1-4
Your Role in the .NET Application Deployment Process . . 1-4
What You Need to Know . 1-5
Products, Compilers, and IDE Installation 1-6
Deployment Target Architectures and Compatibility 1-7
Dependency and Non-Compilable Code Considerations . . . 1-7
For More Information . 1-7

The Magic Square Example . 1-9
About This Example . 1-9

Creating a .NET Component From MATLAB Code 1-11
makesquare Testing . 1-12
Deployable Component Creation . 1-13
Packaging Your Component (Optional) 1-16
Copying the Package You Created . 1-21

Integrating Your .NET Component In a C#
Application . 1-22
Gathering Files Needed for Deployment 1-23
Distribute MATLAB Code Using the MATLAB Compiler
Runtime (MCR) . 1-23

Integrating Your Component into a .NET Class Using
Microsoft® Visual Studio® . 1-27

Building and Testing the .NET Application with Microsoft®

Visual Studio® . 1-36

v

The Magic Square Component in an Enterprise C#
Application . 1-37

Next Steps . 1-39

MATLAB Code Deployment

2
MATLAB Application Deployment Products 2-2

Application Deployment Products and the Deployment
Tool . 2-4
What Is the Difference Between the Deployment Tool and
the mcc Command Line? . 2-4

How Does MATLAB® Compiler™ Software Build My
Application? . 2-4

Dependency Analysis Function (depfun) 2-7
MEX-Files, DLLs, or Shared Libraries 2-8
Component Technology File (CTF Archive) 2-8

Writing Deployable MATLAB Code 2-12
Compiled Applications Do Not Process MATLAB Files at
Runtime . 2-12

Do Not Rely on Changing Directory or Path to Control the
Execution of MATLAB Files . 2-13

Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths 2-14

Gradually Refactor Applications That Depend on
Noncompilable Functions . 2-14

Do Not Create or Use Nonconstant Static State
Variables . 2-15

Get Proper Licenses for Toolbox Functionality You Want to
Deploy . 2-15

How the Deployment Products Process MATLAB
Function Signatures . 2-17
MATLAB Function Signature . 2-17
MATLAB Programming Basics . 2-17

vi Contents

MATLAB Library Loading . 2-19

MATLAB Data File (MAT Files) . 2-21
Explicitly Including MAT files Using the %#function
Pragma . 2-21

Load and Save Functions . 2-21
MATLAB Objects . 2-24

Component Building

3
Supported Compilation Targets . 3-2
.NET Component . 3-2
COM Components . 3-2

The Deployment Tool GUI . 3-4
Watch a Video . 3-4

The mcc Command Line . 3-5
Command-Line Syntax Description 3-5
Using the Deployment Tool GUI from the Command
Line . 3-7

Examples . 3-8

For More Information . 3-9

Component Integration

4
Common Integration Tasks . 4-2
Watch a Video . 4-2

Application Coding . 4-3

vii

Using C# Code In an Integrated .NET Component 4-3
Data Conversion . 4-5
MATLAB API Functions in a C# Program 4-17
Object Passing by Reference . 4-19
Real or Imaginary Components Within Complex Arrays . . 4-22
Jagged Array Processing . 4-24
Field Additions to Data Structures and Data Structure
Arrays . 4-25

MATLAB Array Indexing . 4-25
Console Application Blocking When Creating Figures 4-26
Error Handling . 4-28
Explicitly Freeing Resources With Dispose 4-29

C# Integration Examples . 4-31
Simple Plot Example . 4-31
Passing Variable Arguments . 4-36
Spectral Analysis Example . 4-41
Matrix Math Example . 4-48
Phonebook Example . 4-56
Optimization Example . 4-63

Microsoft® Visual Basic® Integration Examples 4-70
Magic Square Example (Visual Basic) 4-70
Create Plot Example (Visual Basic) 4-74
Variable Arguments Example (Visual Basic) 4-78
Spectral Analysis Example (Visual Basic) 4-81
Matrix Math Example (Visual Basic) 4-86
Phonebook Example (Visual Basic) 4-90
Optimization Example (Visual Basic) 4-97

Component Access On Another Computer 4-104

For More Information . 4-105

Distribute to End Users

5
Deploying Components to End Users 5-2

viii Contents

Distribute MATLAB Code Using the MATLAB Compiler
Runtime (MCR) . 5-2

MCR Run-Time Options . 5-6
What Run-Time Options Can You Specify? 5-6
Getting MCR Option Values Using MWMCR 5-6

MCR Component Cache and CTF Archive
Embedding . 5-9
Overriding Default Behavior . 5-10
For More Information . 5-11

The MCR User Data Interface . 5-12
Supplying Cluster Profiles for Parallel Computing Toolbox
Applications . 5-12

Impersonation Implementation Using ASP.NET 5-18

Enhanced XML Documentation Files 5-22

Type-Safe Interfaces, WCF, and MEF

6
Type-Safe Interface Generation and
Implementation . 6-2
Type-Safe Interfaces: An Alternative to Manual Data
Marshaling . 6-2

Advantages of Implementing a Type-Safe Interface 6-4
How Type-Safe Interfaces Work . 6-5
Implementing a Type-Safe Interface 6-7

Windows Communications Foundation (WCF)™-Based
Components . 6-17
What Is WCF? . 6-17
Before Running the WCF Example 6-18
Deploying a WCF-Based Component 6-19

ix

Managed Extensibility Framework (MEF) Plug-Ins . . . 6-33
What Is MEF? . 6-33
MEF Prerequisites . 6-34
Addition and Multiplication Applications with MEF 6-35

Web Deployment of Figures and Images

7
WebFigures . 7-2
Supported Renderers for WebFigures 7-2
WebFigures Prerequisites . 7-3
Quick Start Implementation of WebFigures 7-6
Advanced Configuration of a WebFigure 7-13
Upgrading Your WebFigures . 7-29
Troubleshooting . 7-29
Logging Levels . 7-31

Creating and Modifying a MATLAB Figure 7-32
Preparing a MATLAB Figure for Export 7-32
Changing the Figure (Optional) . 7-32
Exporting the Figure . 7-33
Cleaning Up the Figure Window . 7-33
Modifying and Exporting Figure Data 7-34

Working with MATLAB Figure and Image Data 7-35
For More Comprehensive Examples 7-35
Working with Figures . 7-35
Working with Images . 7-36

.NET Remoting

8
What Is .NET Remoting? . 8-2
What Are Remotable Components? 8-2
Benefits of Using .NET Remoting . 8-2

x Contents

Your Role in Building Distributed Applications 8-4

.NET Remoting Prerequisites . 8-5

Selecting the Best Method of Accessing Your
Component: MWArray API or Native .NET API 8-6
Using Native .NET Structure and Cell Arrays 8-7

Creating a Remotable .NET Component 8-8
Building a Remotable Component Using the Deployment
Tool . 8-8

Building a Remotable Component Using the mcc
Command . 8-12

Files Generated by the Compilation Process 8-12

Enabling Access to a Remotable .NET Component 8-14
Using the MWArray API . 8-14
Using the Native .NET API: Magic Square Example 8-21
Using the Native .NET API: Cell and Struct Example 8-29

Troubleshooting

9
Troubleshooting the Build Process 9-2
Viewing the Latest Build Log . 9-2
Generating Verbose Output . 9-2

Failure to Find a Required File . 9-3

Diagnostic Messages . 9-4
Enhanced Error Diagnostics Using mstack Trace 9-7

xi

Reference Information

10
Requirements for the MATLAB® Builder™ NE
Product . 10-2
System and Compiler Requirements 10-2
Path Modifications Required for Accessibility 10-2
Limitations and Restrictions . 10-2

Data Conversion Rules . 10-4
Managed Types to MATLAB Arrays 10-4
MATLAB Arrays to Managed Types 10-5
.NET Types to MATLAB Types . 10-7
Character and String Conversion . 10-16
Unsupported MATLAB Array Types 10-16

Overview of Data Conversion Classes 10-17
Overview . 10-17
Returning Data from MATLAB to Managed Code 10-18
Example of MWNumericArray in a .NET Application 10-18
Interfaces Generated by the MATLAB® Builder™ NE
Product . 10-18

MWArray Class Specification . 10-24

Application Deployment Terms . 10-25

Function Reference

11

Creating and Installing COM Components

12
Building a Deployable COM Component 12-2

xii Contents

Packaging a Deployable COM Component 12-3
Add-in and COM Component Registration 12-3

Embedded CTF Archives . 12-5

Using the Command-Line Interface 12-6

Installing COM Components on a Target Computer . . . 12-9

Programming with COM Components Created
by the MATLAB® Builder™ NE Product

13
General Techniques . 13-3

Registering and Referencing the Utility Library 13-5

Creating an Instance of a Class in Microsoft® Visual
Basic® . 13-6
Advantages and Disadvantages . 13-6
CreateObject Function . 13-6
Microsoft® Visual Basic® New Operator 13-7
Advantages of Each Technique . 13-8
Declaring a Reusable Class Instance 13-8

Calling the Methods of a Class Instance 13-9
Standard Mapping Technique . 13-9
Variant . 13-10
Examples of Passing Input and Output Parameters 13-10

Calling a COM Object in a Visual C++ Program 13-12
Using the MATLAB® Builder™ NE Product to Create the
Object . 13-12

Using the Component in a Visual C++ Program 13-13

Using a COM Component in a .NET Application 13-15

xiii

Overview . 13-15
Program Listings . 13-15

Adding Events to COM Objects . 13-16
MATLAB Language Pragma . 13-16
Using a Callback with a Microsoft® Visual Basic® Event . . 13-17

Passing Arguments . 13-21
Overview . 13-21
Creating and Using a varargin Array in Microsoft® Visual
Basic® Programs . 13-21

Creating and Using varargout in Microsoft® Visual Basic®

Programs . 13-22
Passing an Empty varargin From Microsoft® Visual Basic®

Code . 13-23

Using Flags to Control Array Formatting and Data
Conversion . 13-24
Overview . 13-24
Array Formatting Flags . 13-25
Using Array Formatting Flags . 13-25
Using Data Conversion Flags . 13-28
Special Flags for Some Microsoft® Visual Basic® Types . . . 13-30

Using MATLAB Global Variables in Microsoft® Visual
Basic® . 13-31

Blocking Execution of a Console Application That
Creates Figures . 13-34
MCRWaitForFigures . 13-34
Using MCRWaitForFigures to Block Execution 13-35

MCR Run-Time Options . 13-37
What MCR Options are Supported for COM? 13-37
How Do I Specify MCR Options? . 13-37

Sharing an MCR Instance in COM or Java
Applications . 13-38
What Is a Singleton MCR? . 13-38
Advantages and Disadvantages of Using a Singleton 13-38

xiv Contents

Which Products Support Singleton MCR and How Do I
Create a Singleton? . 13-39

Obtaining Registry Information . 13-40

Handling Errors During a Method Call 13-42

Using COM Components in Microsoft® Visual
Basic® Applications

14
Magic Square Example . 14-2
Example Overview . 14-2
Creating the MATLAB File . 14-2
Using the Deployment Tool to Create and Build the
Project . 14-3

Creating the Microsoft® Visual Basic® Project 14-3
Creating the User Interface . 14-4
Creating the Executable in Microsoft® Visual Basic® 14-7
Testing the Application . 14-7
Packaging the Component . 14-7

Creating an Excel Add-in: Spectral Analysis
Example . 14-9
Example Overview . 14-9
Building the Component . 14-9
Integrating the Component with VBA 14-11
Creating the Microsoft® Visual Basic® Form 14-13
Adding the Spectral Analysis Menu Item to Microsoft®

Excel® . 14-19
Saving the Add-in . 14-20
Testing the Add-in . 14-20
Packaging and Distributing the Add-in 14-23

Univariate Interpolation Example 14-25
Example Overview . 14-25
Using the Deployment Tool to Create and Build the
Component . 14-25

xv

Using the Component in Microsoft® Visual Basic® 14-26
Creating the Microsoft® Visual Basic® Form 14-27

Matrix Calculator Example . 14-33
Example Overview . 14-33
Building the Component . 14-33
Using the Component in Microsoft® Visual Basic® 14-34
Creating the Microsoft® Visual Basic® Form 14-35

Curve Fitting Example . 14-44
Example Overview . 14-44
Building the Component . 14-44
Building the Project . 14-45
Using the Component in Microsoft® Visual Basic® 14-45
Creating the Microsoft® Visual Basic® Form 14-45

Bouncing Ball Simulation Example 14-52
Example Overview . 14-52
Building the Component . 14-52
Using the Component in Microsoft® Visual Basic® 14-53
Creating the Microsoft® Visual Basic® Form 14-54

How the MATLAB® Builder™ NE Product
Creates COM Components

15
Overview of Internal Processes . 15-2
How Is a MATLAB® Builder™ NE Component Created? . . 15-2
Code Generation . 15-2
Create Interface Definitions . 15-3
C++ Compilation . 15-3
Linking and Resource Binding . 15-3
Registration of the DLL . 15-3

Component Registration . 15-4
Self-Registering Components . 15-4
Globally Unique Identifier . 15-5
Versioning . 15-7

xvi Contents

Data Conversion . 15-9
Conversion Rules . 15-9
Array Formatting Flags . 15-19
Data Conversion Flags . 15-21

Calling Conventions . 15-23
Producing a COM Class . 15-23
IDL Mapping . 15-24
Microsoft® Visual Basic® Mapping . 15-25

Utility Library for Microsoft COM Components

16
Referencing Utility Classes . 16-2

Utility Library Classes . 16-3
Class MWUtil . 16-3
Class MWFlags . 16-12
Class MWStruct . 16-18
Class MWField . 16-25
Class MWComplex . 16-26
Class MWSparse . 16-29
Class MWArg . 16-32

Enumerations . 16-34
Enum mwArrayFormat . 16-34
Enum mwDataType . 16-34
Enum mwDateFormat . 16-35

Examples

A
Magic Square Example for .NET . A-2

Using Load and Save . A-3

xvii

Creating a .NET Component Namespace A-4

Adding Multiple Classes to a Component A-5

Automatic Casting to Types . A-6

Multidimensional Array Processing in MATLAB and
.NET . A-7

Native Data Conversion . A-8

Return Value Handling . A-9

Using functions engOpen and engEvalString from the
MATLAB Engine API in a C# Program A-10

Handling Data . A-11

Initializing and Populating a Jagged Array A-12

Using WaitForFiguresToDie to Block Execution A-13

Sample Applications (C#) . A-14

Sample Applications (Visual Basic .NET) A-15

Sample Applications (Visual Basic) A-16

Sample Applications (Java) . A-17

Using the MCR Data Interface . A-18

Supplying Run-Time Configuration Information for
Parallel Computing Toolbox Applications A-19

Implementing a Type-Safe Interface A-20

xviii Contents

Deploying a WCF-Based Component A-21

Quick Start to Implementing a WebFigure A-22

Working with Functions that Return a Single
WebFigure as the Function’s Only Output A-23

Working With Functions That Return Multiple
WebFigures In an Array as the Output A-24

Attaching a WebFigure . A-25

Referencing a WebFigure Attached to the Local
Server . A-26

Referencing a WebFigure Attached to a Remote
Server . A-27

Using Global Assembly Cache (Global.asax) to Create
WebFigures at Server Start-Up A-28

Creating and Modifying a MATLAB Figure A-29

Working with MATLAB Figures . A-30

Working with Images . A-31

Building a Remotable Component Using the
Deployment Tool . A-32

Building a Remotable Component Using the mcc
Command . A-33

Using Native .NET Structure and Cell Arrays A-34

COM Components . A-35

xix

Utility Library Classes for COM Components A-36

Deploying .NET Components With the F# Programming
Language . A-37

Deploying .NET Components With the F#
Programming Language

B
The Magic Square Example Using F# B-2
Prerequisites . B-2
Step 1: Build the Component . B-2
Step 2: Integrate the Component Into an F# Application . . B-2
Step 3: Deploy the Component . B-5

Index

xx Contents

1

Getting Started

• “Product Description” on page 1-2

• “Product Overview” on page 1-3

• “MATLAB® Builder™ NE Prerequisites” on page 1-4

• “The Magic Square Example” on page 1-9

• “Creating a .NET Component From MATLAB Code” on page 1-11

• “Integrating Your .NET Component In a C# Application” on page 1-22

• “Next Steps” on page 1-39

1 Getting Started

Product Description
Deploy MATLAB® code as .NET or COM components

MATLAB Builder™ NE lets you create .NET and COM components from
MATLAB programs that include MATLAB math and graphics, and GUIs
developed with MATLAB. You can integrate these components into larger
.NET, COM, and Web applications and deploy them royalty-free to computers
that do not have MATLAB installed.

Using MATLAB Compiler™, MATLAB Builder NE encrypts your MATLAB
programs and then generates .NET or COM wrappers around them so that
they can be accessed just like native .NET and COM components.

Key Features

• Royalty-free desktop and Web deployment of .NET and COM components
to computers that do not have MATLAB installed

• Components callable from Common Language Specification
(CLS)-compliant languages, including C#, F#, VB.NET, or ASP.NET, and
COM-compliant technology, including Visual Basic®, ASP, or Excel®

• Type-safe automatic conversion to and from native .NET, COM, and
MATLAB data types

• Direct passing of .NET objects to and from a compiled MATLAB function

• Windows Communication Foundation (WCF) support with Web or
enterprise service-oriented architecture (SOA)

• .NET remoting for interprocess communication

• WebFigures interface for MATLAB figure zooming, rotating, and panning

1-2

Product Overview

Product Overview

MATLAB Compiler Extension
MATLAB Builder NE lets you create .NET and COM components from
MATLAB programs that include MATLAB math and graphics, and GUIs
developed with MATLAB. You can integrate these components into larger
.NET, COM, and Web applications and deploy them royalty-free to computers
that do not have MATLAB installed.

Using MATLAB Compiler, MATLAB Builder NE encrypts your MATLAB
programs and then generates .NET or COM wrappers around them so that
they can be accessed just like native .NET and COM components.

The builder converts MATLAB functions to .NET methods that encapsulate
MATLAB code written by the MATLAB programmer. All MATLAB code to
be compiled must take the form of a function. Each MATLAB Builder NE
component contains one or more classes, each providing an interface to the
MATLAB functions in the MATLAB code.

When you package and distribute the application to your users, you include
supporting files generated by the builder as well as the MATLAB Compiler
Runtime (MCR). For more information about the MCR, see “Distribute
MATLAB Code Using the MATLAB Compiler Runtime (MCR)” on page 5-2 in
the MATLAB Compiler documentation.

For more information about how this product works with MATLAB Compiler,
see “MATLAB Code Deployment”.

1-3

1 Getting Started

MATLAB Builder NE Prerequisites

In this section...

“Your Role in the .NET Application Deployment Process” on page 1-4

“What You Need to Know” on page 1-5

“Products, Compilers, and IDE Installation” on page 1-6

“Deployment Target Architectures and Compatibility” on page 1-7

“Dependency and Non-Compilable Code Considerations” on page 1-7

“For More Information” on page 1-7

Your Role in the .NET Application Deployment Process
Depending on the size of your organization, you may play one or more roles
in the process of successfully deploying a .NET application. For example,
your role may be to:

• Analyze user requirements and satisfy them by writing a program in
MATLAB code (MATLAB programmer)

• Implement the infrastructure needed to successfully deploy a .NET
application to the Web (middle-tier developer)

• Create a remotable component that can be shared across distributed
systems (.NET developer)

• Perform tasks associated with numerous roles, usually within a smaller
organization (end-to-end developer)

The table Application Deployment Roles, Goals, and Tasks on page 1-5
describes some of the different roles, or jobs, that MATLAB Builder NE users
typically perform and which tasks they would most likely perform when
running the examples in this documentation.

1-4

MATLAB® Builder™ NE Prerequisites

Application Deployment Roles, Goals, and Tasks

Role Knowledge Base Responsibilities Task To Achieve
Goal

MATLAB programmer

• MATLAB expert

• No IT experience

• No access to IT
systems

• Develops models;
implements in
MATLAB

• Uses tools to create
a component that is
used by the .NET
programmer

See “Creating a
.NET Component
From MATLAB
Code” on page
1-11.

.NET developer

• Little or no
MATLAB
experience

• Moderate IT
experience

• .NET expert

• Minimal access
to IT systems

• Integrates deployed
component with the
rest of the .NET
application

• Integrates deployed
MATLAB Figures
with the rest of the
.NET application

See “Integrating
Your .NET
Component In
a C# Application”
on page 1-22.

What You Need to Know
To use the MATLAB Builder NE product, specific requirements exist for each
user role.

1-5

1 Getting Started

Role Requirements

MATLAB
programmer

• A basic knowledge of MATLAB, and how to work with:

- MATLAB data types

- MATLAB structures

.NET developer

• Exposure to:

- A CLS-compliant programming language

- .NET Framework

• Knowledge of object-oriented programming concepts

Products, Compilers, and IDE Installation
Install the following to run the example described in this chapter:

• MATLAB

• MATLAB Compiler

• MATLAB Builder NE

• An Integrated Development Environment (IDE) such as Microsoft® Visual
Studio®

Note Log in with administrator privileges before installing these products.

For more information about product installation and requirements, see
“Installation and Configuration” in the MATLAB Compiler documentation.

Microsoft .NET Framework Installation
Install the supported version of the Microsoft .NET Framework. Your ability
to use the latest builder functionality often depends on having the most
current version of the framework installed.

See “Supported Microsoft .NET Framework Versions” for details.

1-6

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

MATLAB® Builder™ NE Prerequisites

Troubleshooting Installation Problems.

For these issues... Solution

No compatible version of .NET
framework found

Install the supported Microsoft .NET
Framework version. See “Supported
Microsoft .NET Framework
Versions”

Deployment Target Architectures and Compatibility
Before you deploy a component with MATLAB Builder NE, consider if your
target machines are 32-bit or 64-bit.

Applications developed on one architecture must be compatible with the
architecture on the system where they are deployed.

Dependency and Non-Compilable Code
Considerations
Before you deploy your code, examine the code for dependencies on functions
that may not be compatible with MATLAB Compiler.

For more detailed information about dependency analysis (depfun) and
how MATLAB Compiler evaluates MATLAB code prior to compilation, see
“MATLAB Code Deployment” in the MATLAB Compiler User’s Guide.

For More Information

If you want to... See...

Deploy a .NET component “The Magic Square Example” on
page 1-9

Deploy a COM component “Magic Square Example” on page
14-2 for COM Builder

Deploy a component on the Web Chapter 7, “Web Deployment of
Figures and Images”

1-7

1 Getting Started

If you want to... See...

Deploy a figure or image to the Web Chapter 7, “Web Deployment of
Figures and Images”

Deploy a remotable component Chapter 8, “.NET Remoting”

1-8

The Magic Square Example

The Magic Square Example

About This Example
This example shows you how to transform a MATLAB function into a
deployable MATLAB Builder NE component.

The Magic Square example shows you how to create a .NET component
named MagicSquareComp, which contains the MLTestClass class and other
files needed to deploy your application.

The MLTestClass wraps a MATLAB function, makesquare.m, which computes
a magic square.

Note The examples here use the Windows® deploytool GUI, a graphical
front-end interface to MATLAB Compiler software. For information about
how to perform these tasks using the command-line interface to MATLAB®

Compiler™ software, see the mcc reference page in this User’s Guide.

What Is a Magic Square?
A magic square is simply a square array of integers arranged so that their
sum is the same when added vertically, horizontally, or diagonally.

How Do I Access the Examples?
For information on accessing the example files in the product, see
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET.

Watch a Video
Watch a video about deploying applications using MATLAB Builder NE.

1-9

1 Getting Started

For More Information

If you want to... See...

See a complete code sample of
integrating the Magic Square
component into a .NET application

“The Magic Square Component in an
Enterprise C# Application” on page
1-37

Deploy a Web component Chapter 7, “Web Deployment of
Figures and Images”

Deploy an existing figure or image
to the Web

Chapter 7, “Web Deployment of
Figures and Images”

Deploy a remotable component Chapter 8, “.NET Remoting”

1-10

Creating a .NET Component From MATLAB Code

Creating a .NET Component From MATLAB Code

In this section...

“makesquare Testing” on page 1-12

“Deployable Component Creation” on page 1-13

“Packaging Your Component (Optional)” on page 1-16

“Copying the Package You Created” on page 1-21

MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Uses tools to create a component that
is used by the .NET developer

The MATLAB programmer usually performs the following tasks.

Key Tasks for the MATLAB Programmer

Task Reference

Test the MATLAB code to ensure it is suitable
for deployment.

“makesquare Testing” on page 1-12

Create a .NET component by running the
deploytool.

“Deployable Component Creation” on page 1-13

Optionally, use the Packaging Tool to wrap all
deliverable files in one bundle.

“Packaging Your Component (Optional)” on
page 1-16

Copy the output so the .NET programmer can
work with it further.

“Copying the Package You Created” on page
1-21

1-11

1 Getting Started

makesquare Testing
In this example, you test a precreated MATLAB file (makesquare.m)
containing the predefined MATLAB function magic, in order to have a
baseline to compare to the results of the function when it is finally wrappered
as a deployable .NET component.

1 Using MATLAB, locate the makesquare.m file at
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\MagicSquareExample\Magi
This file has the following contents:

function y = makesquare(x)
%MAKESQUARE Magic square of size x.
% Y = MAKESQUARE(X) returns a magic square of size x.
% This file is used as an example for the MATLAB
% Builder NE product.

% Copyright 2001-2012 The MathWorks, Inc.

y = magic(x);

2 At the MATLAB command prompt, enter makesquare(5), and view the
results. The output should appear as follows:

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

For More Information

If you want to... See...

• Perform basic MATLAB
Programmer tasks

• Understand how the deployment
products process your MATLAB
functions

Chapter 2, “MATLAB Code
Deployment”

1-12

Creating a .NET Component From MATLAB Code

If you want to... See...

• Understand how the deployment
products work together

• Explore guidelines about writing
deployable MATLAB code

Deployable Component Creation
You create a .NET component by using the Deployment Tool GUI to build
a .NET class that wraps around the sample MATLAB code discussed in
“makesquare Testing” on page 1-12.

Use the following information when creating your component as you work
through this example:

Project Name makeSqr

Class Name MLTestClass

File to compile makesquare.m

1 Start MATLAB, if you have not done so already.

2 Type deploytool at the command prompt, and press Enter. The
Deployment Project dialog box opens.

1-13

1 Getting Started

The Deployment Project Dialog Box

3 Create a deployment project using the Deployment Project dialog box:

a Type the name of your project, in the Name field.

b Enter the location of the project in the Location field. Alternately,
navigate to the location.

c Select the target for the deployment project from the Type drop-down
menu.

d Click OK.

Tip You can inspect the values in the Settings dialog before building your

project. To do so, click the Action icon () on the toolbar, and then click
Settings. Verify where your src and distrib folders will be created
because you will need to reference these folders later.

4 On the Build tab:

• If you are building a COM application, click Add files to open the Add
Files dialog box.

Click Open to select the file or files.

1-14

Creating a .NET Component From MATLAB Code

• If you are building a .NET application, click Add class. Type the name
of the class in the Class Name field, designated by the letter c:

For this class, add MATLAB files you want to compile by clicking Add
files then click Open to select the file or files. To add another class,
click Add class.

• You may optionally add supporting files. For examples of these files,
see the deploytool Help. To add these files, in the Shared Resources
and Helper Files area:

e Click Add files/directories

f Click Open to select the file or files.

Note If you are building a COM component (not a .NET component) and
you don’t have administrator privileges, you can select the Register the
resulting component for you only on the development machine
option in the Settings dialog of the Deployment Tool (in the Advanced
tab) or use the mcc -u option.

5 When you complete your changes, click the Build button (). When the
build finishes, click Close to dismiss the dialog box.

What Gets Built?
After you build your .NET component with the Deployment Tool, you have the
following in the src and distrib subdirectories of your project directory:

1-15

1 Getting Started

These Subdirectories of the
Project Directory:

Contain these files:

src • componentName.xml

• componentName.pdb (if the
Debug option is selected)

distrib • componentName.dll

• componentNameNative.dll

Note See Chapter 8, “.NET
Remoting” for more information
on using the native .NET API.

For More Information

If you want to... See...

• Perform basic MATLAB
Programmer tasks

• Understand how the deployment
products process your MATLAB
functions

• Understand how the deployment
products work together

• Explore guidelines about writing
deployable MATLAB code

Chapter 2, “MATLAB Code
Deployment”

Packaging Your Component (Optional)
Bundling the .NET component with additional files you can distribute to
users is called packaging. You perform this step using the packaging function
of deploytool. If you are creating a shared component and want to include
additional code with the component, you must perform this step.

1-16

Creating a .NET Component From MATLAB Code

The package process zips the following files into a single self-extracting
executable, componentName.exe:

• componentName.dll

• componentNameNative.dll

Note See Chapter 8, “.NET Remoting” for more information on using
the native .NET API.

• componentName.xml

• componentName.pdb (if the Debug option is selected)

• MCR Installer (if the Include MCR option is selected)

• _install.bat (script run by the self-extracting executable)

Tip Instead of performing the steps below, you can alternately copy the
distrib folder and the MCR Installer to a local folder of your choice.

1 On the Package tab, add the MATLAB Compiler Runtime (MCR). To do
so, click Add MCR, and choose one of the two options described in the
following table.

Option What Does This Option Do? When Should I Use This
Option?

Embed the MCR in the
package

This option physically copies
the MCR Installer file into the
package you create.

• You have a limited number
of end users who deploy
a small number of
applications at sporadic
intervals

• Your users have no
intranet/network access

• Resources such as disk
space, performance, and

1-17

1 Getting Started

Option What Does This Option Do? When Should I Use This
Option?

processing time are not
significant concerns

Note Distributing the
MCR Installer with each
application requires more
resources.

Invoke the MCR from a
network location

This option lets you add a link
to an MCR Installer residing
on a local area network,
allowing you to invoke the
installer over the network,
as opposed to copying the
installer physically into the
deployable package.
This option sets up a script
to install the MCR from a
specified network location,
saving time and resources
when deploying applications.

• You have a large number
of end users who deploy
applications frequently

• Your users have
intranet/network access

• Resources such as disk
space, performance,
and processing time are
significant concerns for your
organization

If you choose this option,
modify the location of the MCR
Installer, if needed. To do so,
select the Preferences link
in this dialog box, or change
the Compiler option in your
MATLAB Preferences.

1-18

Creating a .NET Component From MATLAB Code

Option What Does This Option Do? When Should I Use This
Option?

Caution Before selecting
this option, consult with
your network or systems
administrator. Your
administrator may already
have selected a network
location from which to run the
MCR Installer.

For more information about the role the MCR plays in the deployment
process, see “Distribute MATLAB Code Using the MATLAB Compiler
Runtime (MCR)” on page 5-2.

2 Next, add others files you feel may be useful to end users. To package
additional files or folders, click Add file/directories, select the file or
folder you want to package, and click Open.

3 In the Deployment Tool, click the Packaging button ().

4 For Windows, the package is a self-extracting executable. On platforms
other than Windows, the package is delivered as a .zip file. Verify that the
contents of the distrib folder contains the files you specified.

MATLAB Compiler Runtime (MCR) and the MCR Installer
The MATLAB Compiler Runtime (MCR) is an execution engine made up of
the same shared libraries MATLAB uses to enable the execution of MATLAB
files on systems without an installed version of MATLAB.

The MATLAB Compiler Runtime (MCR) is now available for downloading
from the Web to simplify the distribution of your applications or components
created with the MATLAB® Compiler. Direct your end users to the MATLAB
Compiler product page to download the MCR, as opposed to redistributing or
packaging it with your applications or components.

1-19

http://www.mathworks.com/products/compiler/
http://www.mathworks.com/products/compiler/

1 Getting Started

In order to deploy a component, you can either package the MCR along with it
or simply direct your end users to download it from the Web.

Before you utilize the MCR on a system without MATLAB, run the MCR
Installer. Locate the installer my entering the mcrinstaller command from
MATLAB.

The installer does the following:

1 Installs the MCR (if not already installed on the target machine)

2 Installs the component assembly in the folder from which the installer is
run

3 Copies the MWArray assembly to the Global Assembly Cache (GAC), as
part of installing the MCR

For More Information

If you want to... See...

Build (compile) a component from
your MATLAB code

“Deployable Component Creation”
on page 1-13

Integrate your component into a
production environment

“Integrating Your Component into a
.NET Class Using Microsoft® Visual
Studio®” on page 1-27

• Perform basic MATLAB
Programmer tasks

• Understand how the deployment
products process your MATLAB
functions

• Understand how the deployment
products work together

• Explore guidelines about writing
deployable MATLAB code

Chapter 2, “MATLAB Code
Deployment”

1-20

Creating a .NET Component From MATLAB Code

Copying the Package You Created
Copy the package that you created to the local folder of your choice, or send
them directly to the .NET developer.

1-21

1 Getting Started

Integrating Your .NET Component In a C# Application

In this section...

“Gathering Files Needed for Deployment” on page 1-23

“Distribute MATLAB Code Using the MATLAB Compiler Runtime (MCR)”
on page 5-2

“Integrating Your Component into a .NET Class Using Microsoft® Visual
Studio®” on page 1-27

“Building and Testing the .NET Application with Microsoft® Visual Studio®”
on page 1-36

“The Magic Square Component in an Enterprise C# Application” on page
1-37

The following tasks are usually performed by the .NET developer.

.NET Developer

Role Knowledge Base Responsibilities

.NET
Developer

• Little to no MATLAB
experience

• Moderate IT experience

• .NET expert

• Minimal access to IT
systems

• Integrates deployed
component with the rest
of the .NET application

1-22

Integrating Your .NET Component In a C# Application

Key Tasks for the .NET Developer

Task Reference

Ensure you have the needed files
from the MATLAB programmer.

“Gathering Files Needed for
Deployment” on page 1-23

Install your application on target
computers without MATLAB
(installing the MCR).

“Distribute MATLAB Code Using
the MATLAB Compiler Runtime
(MCR)” on page 5-2

Integrate classes generated by the
MATLAB Builder NE product into
existing .NET applications.

“Integrating Your Component into a
.NET Class Using Microsoft® Visual
Studio®” on page 1-27

Verify your .NET application works
as expected in your end user’s
deployment environment.

“Building and Testing the .NET
Application with Microsoft® Visual
Studio®” on page 1-36

Gathering Files Needed for Deployment
Before beginning, verify you have the files the MATLAB programmer
packaged, listed in “Packaging Your Component (Optional)” on page 1-16.

The package is a self-extracting executable. Paste it in a folder on the
development machine and run it. If you are using a .zip file bundled with
WinZip, unzip and extract the contents to the development machine.

Distribute MATLAB Code Using the MATLAB Compiler
Runtime (MCR)
On target computers without MATLAB, install the MCR, if it is not already
present on the deployment machine.

MATLAB Compiler Runtime (MCR) and the MCR Installer
The MATLAB Compiler Runtime (MCR) is an execution engine made up of
the same shared libraries MATLAB uses to enable the execution of MATLAB
files on systems without an installed version of MATLAB.

1-23

http://www.winzip.com

1 Getting Started

The MATLAB Compiler Runtime (MCR) is now available for downloading
from the Web to simplify the distribution of your applications or components
created with the MATLAB® Compiler. Direct your end users to the MATLAB
Compiler product page to download the MCR, as opposed to redistributing or
packaging it with your applications or components.

In order to deploy a component, you can either package the MCR along with it
or simply direct your end users to download it from the Web.

Before you utilize the MCR on a system without MATLAB, run the MCR
Installer. Locate the installer my entering the mcrinstaller command from
MATLAB.

The installer does the following:

1 Installs the MCR (if not already installed on the target machine)

2 Installs the component assembly in the folder from which the installer is
run

3 Copies the MWArray assembly to the Global Assembly Cache (GAC), as
part of installing the MCR

MCR Prerequisites

1 Since installing the MCR requires write access to the system registry,
ensure you have administrator privileges to run the MCR Installer.

2 The version of the MCR that runs your application on the target computer
must be compatible with the version of MATLAB Compiler that built the
component.

3 Avoid installing the MCR in MATLAB installation directories.

Add the MCR Installer To Your Deployment Package
Include the MCR in your deployment by using the Deployment Tool.

On the Package tab of the deploytool interface, click Add MCR.

1-24

http://www.mathworks.com/products/compiler/
http://www.mathworks.com/products/compiler/

Integrating Your .NET Component In a C# Application

Note For more information about additional options for including the MCR
Installer (embedding it in your package or locating the installer on a network
share), see “Packaging (Optional)” in the MATLAB Compiler User’s Guide or
in your respective Builder User’s Guide.

Testing with the MCR
When you test with the MCR, keep in mind that the MCR is an instance of
MATLAB. Given this, it is not possible to load the MCR into MATLAB.

For example, if you build a generic COM component with the Deployment
Tool from MATLAB Builder NE, you generate a DLL.

If you then try to test the component with an application such as actxserver,
which loads its process into MATLAB, you are effectively loading the MCR
into MATLAB, producing an error such as this:

mwsamp.mymagic(3,[],[])
??? Invoke Error, Dispatch Exception:
Source: tmw1.Class1.1_0
Description: MCR instance is not available

Therefore, understand the behaviors of third-party processes before
attempting to test them with the MCR.

If you are uncertain about the behavior of these processes, contact your
developer or systems administrator.

MCR Installation and Setting System Paths
To install the MCR, perform the following tasks on the target machines:

1 If you added the MCR during packaging, open the package to locate the
installer. Otherwise, run the command mcrinstaller to display the
locations where you can download the installer.

2 If you are running on a platform other than Windows, set the system
paths on the target machine. Setting the paths enables your application
to find the MCR.

1-25

1 Getting Started

Windows paths are set automatically. On Linux and Mac, you can use the
run script to set paths. See “Using MATLAB Compiler on Mac® or Linux®”
for detailed information on performing all deployment tasks specifically
with UNIX variants such as Linux and Mac.

Where to find the MWArray API. The MCR also includes MWArray.dll,
which contains an API for exchanging data between your applications and
the MCR. You can find documentation for this API in the Help folder of the
installation.

On target machines where the MCR Installer is run, the MCR Installer puts
the MWArray assembly in installation_folder\toolbox\dotnetbuilder\
bin\architecture\framework_version.

See MATLAB Builder NE Release Notes for a list of supported framework
versions.

Tip Learn about creating type-safe interfaces for .NET components, in order
to avoid data conversion tasks with MWArray. See Chapter 6, “Type-Safe
Interfaces, WCF, and MEF” for details.

1-26

Integrating Your .NET Component In a C# Application

Sample Directory Structure of the MCR Including MWArray.dll

Integrating Your Component into a .NET Class Using
Microsoft Visual Studio

• “Creating a Microsoft® Visual Studio® Project” on page 1-28

• “Creating a Reference to Your Component” on page 1-28

• “Creating a Reference to the MWArray API” on page 1-28

• “Making .NET Namespaces Available for Your Generated Component and
MWArray Libraries” on page 1-29

• “Initializing Your Classes” on page 1-31

• “Instantiating Your Classes” on page 1-32

• “Invoking the Component” on page 1-33

• “Handling Errors Using Try-Catch Blocks” on page 1-34

• “For More Information” on page 1-36

1-27

1 Getting Started

Creating a Microsoft Visual Studio Project
To create a Microsoft Visual Studio project:

1 Open Microsoft Visual Studio

2 Click File > New > Project.

3 In the New Project dialog, select the project type and template you want to
use.

For example, if you want to create a C# Console Application, select
Windows in the Visual C# branch of the Project Type pane, and select
the Console Application template from the Templates pane.

4 Type the name of the project in the Name field (MainApp, for example).

5 Click OK. Your MainApp source shell is created.

Creating a Reference to Your Component
Create a reference in your MainApp code to the component that you just
built. In Microsoft Visual Studio, perform the following steps:

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on
the right side), select the name of your project,MainApp, highlighting it.

2 Right-click MainApp and select Add Reference.

3 In the Add Reference dialog box, select the Browse tab. Locate the
distrib folder you created when you built the .NET component. Select
the assembly makeSqr.dll.

4 Click OK. Your .NET assembly, created with the Deployment Tool, is now
referenced by your Microsoft Visual Studio project.

Creating a Reference to the MWArray API
In addition to adding a reference to your makeSqr assembly, you also need to
reference MWArray.dll.

1-28

Integrating Your .NET Component In a C# Application

Note if you previously installed the MCR, MWArray.dll which has already
been registered with the Global Assembly Cache (GAC). The GAC is a
machine-wide .NET assembly cache for Microsoft’s CLR platform.

To create the MWArray reference, in Microsoft Visual Studio, perform the
following steps:

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on
the right side), select the name of your project (MainApp), and highlight it.

2 Right-click and select Add Reference.

3 In the Add Reference dialog box, locate MWArray.dll by doing the following,
based on the version of Visual Studio you are running:

• Microsoft Visual Studio 2005 or 2008: In the Add Reference dialog
box, select the .NET tab. Locate MathWorks, .NET MWArray API,
and select it. Click OK

• Microsoft Visual Studio 2010: Browse for MWArray in this location:
matlabroot\toolbox\dotnetbuilder\bin\arch\version\ and click
Open.

.

4 Click OK. MWArray.dll is now referenced by your Microsoft Visual Studio
project.

Tip If you cannot locate the MathWorks, .NET MWArray API, it is likely
the MCR was not installed correctly. See “Distribute MATLAB Code Using
the MATLAB Compiler Runtime (MCR)” on page 5-2 for more information.

Making .NET Namespaces Available for Your Generated
Component and MWArray Libraries
Make pertinent namespaces available to your application by adding the
following using statements to your C#/.NET code:

using com.component_name;

1-29

1 Getting Started

using MathWorks.MATLAB.NET.Arrays;
using MathWorks.MATLAB.NET.Utility;

Tip When you add these statements to your code, use these best-practices:

• Terminate each using statement with a semi-colon (;).

• Add references to the MWArray API. Microsoft Visual Studio’s
auto-completion feature, Intellisense™, can provide you completion tips as
you write your code, but only if you first add references. See “Creating a
Reference to Your Component” on page 1-28 and “Creating a Reference to
the MWArray API” on page 1-28 for more information.

Specifying Component Assembly and Namespace. To use the
component assembly generated using the MATLAB Builder NE product from
the client application, you must

• Reference the MATLAB data conversion assembly and specify the
namespace in your application, as shown:

using MathWorks.MATLAB.NET.Arrays;

• Reference the namespace for the builder assembly generated for your
particular component and specify the namespace in your application, for
example:

using MyComponentName;

Note The builder supports nested namespaces.

Suppose you named the component you created MyComponentName and you
want to use it in a program named MyApp.cs. Here are the statements to use
at the beginning of MyApp.cs:

using System;
using MathWorks.MATLAB.NET.Arrays;
using MyComponentName;

1-30

Integrating Your .NET Component In a C# Application

Initializing Your Classes
As a best practice, initialize your classes before you use them.

For example, you start by initializing an abstract class, MLTestClass, and
then writing the code as follows.

Initializing Classes

In this example, you perform the following initializations:

• Initializing classes to handle all input and output arguments
(MWNumericArray input = null and MWNumericArray output = null).
MWNumericArray is an interface to MATLAB’s numeric type.

1-31

1 Getting Started

• Initializing a class to handle MWArrays that the program returns
(MWArray[] result = null— an array of MWArrays).

Instantiating Your Classes
After your classes have been initialized, you write code to create objects
(instances of the class) using instantiation (creating an instance of a class).
Instantiating a class requires use of the new keyword.

In this example, you instantiate MLTestClass with obj = new
MLTestClass();:

Instantiating a Class

Creating an Instance of a Class. As with any .NET class, you need to
create an instance of the classes you create with the MATLAB Builder NE
product before you can use them in your program.

1-32

Integrating Your .NET Component In a C# Application

Suppose you build a component with a class named MyComponentClass. Here
is an example of creating an instance of that class:

MyComponentClass classInstance = new MyComponentClass();

Invoking the Component
After you complete the tasks of initializing and instantiating the classes you
are working with, invoke the makeSqr component you built with MATLAB
Builder NE in “Deployable Component Creation” on page 1-13.

Invoke the component method using a signature containing both the number
of output arguments expected and the number of input arguments the
MATLAB function requires. In this example, using makeSqr, the number of
input arguments is 1 and the number of output arguments is 5:

obj.makeSqr(1, 5);

Using Implicit Conversion. Make use of implicit conversion, from .NET
types to MATLAB types, by passing the native C# value directly to makeSqr
using the input argument, as follows:

input = new MWNumericArray(5);
obj.makeSqr(1, input);

Using Implicit Constructors. You can exploit implicit constructors supplied
with MWArray classes to save writing code.

For example, in this example, you can directly define your input as 5 (input
being identified previously as MATLAB numeric type MWNumericArray).

1-33

1 Getting Started

Defining Input Using an Implicit Constructor

Handling Output from MWArray. The makeSqr method returns an array
of MWArrays

Extract the Magic Square you created from the first indice of result and
print the output, as follows:

output = (MWNumericArray)result[0];
Console.WriteLine(output);

Handling Errors Using Try-Catch Blocks
Because class instantiation and method invocation make their exceptions at
run-time, you enclose your code in a try-catch block to handle errors.

1-34

Integrating Your .NET Component In a C# Application

Using a Try-Catch Block

For More Information

If you want to... See...

Perform advanced integration tasks Chapter 4, “Component Integration”

Convert native data types to
MATLAB data types

“Manual Data Conversion from
Native Types to MATLAB Types” on
page 4-8

Learn about creating type-safe
interfaces, in order to avoid data
conversion tasks with MWArray.

Chapter 6, “Type-Safe Interfaces,
WCF, and MEF”

1-35

1 Getting Started

If you want to... See...

Automatic casting to MATLAB data
types

“Automatic Casting to MATLAB
Types” on page 4-7

Learn more about building your
component

Chapter 3, “Component Building”

• Perform basic MATLAB
Programmer tasks

• Understand how the deployment
products process your MATLAB
functions

• Understand how the deployment
products work together

• Explore guidelines about writing
deployable MATLAB code

Chapter 2, “MATLAB Code
Deployment”

Building and Testing the .NET Application with
Microsoft Visual Studio
After you finish writing your code, you build and run it with Microsoft Visual
Studio:

1 To build the application, select Build > Build Solution.

2 To run the application, select Debug > Start Without Debugging.

For More Information

If you want to... See...

Perform advanced integration tasks Chapter 4, “Component Integration”

Convert native data types to
MATLAB data types

“Manual Data Conversion from
Native Types to MATLAB Types” on
page 4-8

1-36

Integrating Your .NET Component In a C# Application

If you want to... See...

Learn about creating type-safe
interfaces, in order to avoid data
conversion tasks with MWArray.

Chapter 6, “Type-Safe Interfaces,
WCF, and MEF”

Automatic casting to MATLAB data
types

“Automatic Casting to MATLAB
Types” on page 4-7

Learn more about building your
component

Chapter 3, “Component Building”

• Perform basic MATLAB
Programmer tasks

• Understand how the deployment
products process your MATLAB
functions

• Understand how the deployment
products work together

• Explore guidelines about writing
deployable MATLAB code

Chapter 2, “MATLAB Code
Deployment”

The Magic Square Component in an Enterprise C#
Application

1 Write source code for an application that uses the .NET component created in
“Deployable Component Creation” on page 1-13.

The C# source code for the sample application for this example is in
MagicSquareExample\MagicSquareCSApp\MagicSquareApp.cs.

1-37

1 Getting Started

Tip Although MATLAB Builder NE generates C# code for the MagicSquare
component and the sample application is in C#, applications that use the
component do not need to be coded in C#. You can access the component from
any CLS-compliant .NET language. For C#, as well as Microsoft Visual Basic
examples, see Chapter 4, “Component Integration”.

2 Build the application using Visual Studio .NET.

Note In the project file for this example, the MWArray assembly and the
magic square component assembly have been prereferenced. Any references
preceded by an exclamation point require you to remove the reference and
rereference the affected assembly.

Note Microsoft .NET Framework version 2.0 is not supported by Visual
Studio 2003.

a Open the project file for the Magic Square example
(MagicSquareCSApp.csproj) in Visual Studio .NET.

b Add a reference to the MWArray component in
matlabroot\toolbox\dotnetbuilder\bin\
architecture\framework_version.

See “Supported Microsoft .NET Framework Versions” for a list of supported
framework versions.

c If necessary, add a reference to the Magic Square component
(MagicSquareComp), which is in the distrib subfolder.

1-38

Next Steps

Next Steps
After you create and distribute the initial application, you probably want
to continue to enhance that application. See the following documentation
references for details about some of the more common tasks to perform as
you develop your application.

Writing .NET applications that
can access .NET methods that
encapsulate MATLAB code

Chapter 4, “Component Integration”

Sample applications that access
methods developed in MATLAB

Chapter 4, “Component Integration”

Learn about creating type-safe
interfaces, in order to avoid data
conversion tasks with MWArray.

Chapter 6, “Type-Safe Interfaces,
WCF, and MEF”

1-39

1 Getting Started

Deploying .NET components over
the Web

Chapter 7, “Web Deployment of
Figures and Images”

Creating a remotable component
or learning about remotable
components

Chapter 8, “.NET Remoting”

1-40

2

MATLAB Code Deployment

• “MATLAB Application Deployment Products ” on page 2-2

• “Application Deployment Products and the Deployment Tool” on page 2-4

• “Writing Deployable MATLAB Code” on page 2-12

• “How the Deployment Products Process MATLAB Function Signatures”
on page 2-17

• “MATLAB Library Loading” on page 2-19

• “MATLAB Data File (MAT Files)” on page 2-21

2 MATLAB® Code Deployment

MATLAB Application Deployment Products
MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Uses tools to create a component that
is used by the .NET developer

The following table and figure summarizes the target applications supported
by each product.

MATLAB Suite of Application Deployment Products

Product Target Stand-
alones?

Function
Libraries?

Graphical
Apps?

Web
Apps?

WebFigures?

MATLAB
Compiler

C and C++
standalones

Yes Yes Yes No No

MATLAB
Builder NE

C# .NET
components
Visual
Basic COM
components

No Yes Yes Yes Yes

MATLAB
Builder JA

Java™
components

No Yes Yes Yes Yes

MATLAB
Builder EX

Microsoft
Excel
add-ins

No Yes Yes No No

2-2

MATLAB® Application Deployment Products

MATLAB® Application Deployment Products

As this figure illustrates, each of the builder products uses the MATLAB
Compiler core code to create deployable components.

2-3

2 MATLAB® Code Deployment

Application Deployment Products and the Deployment Tool

In this section...

“What Is the Difference Between the Deployment Tool and the mcc
Command Line?” on page 2-4

“How Does MATLAB® Compiler™ Software Build My Application?” on
page 2-4

“Dependency Analysis Function (depfun)” on page 2-7

“MEX-Files, DLLs, or Shared Libraries” on page 2-8

“Component Technology File (CTF Archive)” on page 2-8

What Is the Difference Between the Deployment Tool
and the mcc Command Line?
When you use the Deployment Tool (deploytool) GUI, you perform any
function you would invoke using the MATLAB Compiler mcc command-line
interface. The Deployment Tool interactive menus and dialogs build mcc
commands that are customized to your specification. As such, your MATLAB
code is processed the same way as if you were compiling it using mcc.

Deployment Tool advantages include:

• You perform related deployment tasks with a single intuitive GUI.

• You maintain related information in a convenient project file.

• Your project state persists between sessions.

• Your previous project loads automatically when the Deployment Tool starts.

• You load previously stored compiler projects from a prepopulated menu.

• Package applications for distribution.

How Does MATLAB Compiler Software Build My
Application?
To build an application, MATLAB Compiler software performs these tasks:

2-4

Application Deployment Products and the Deployment Tool

1 Parses command-line arguments and classifies by type the files you provide.

2 Analyzes files for dependencies using the Dependency Analysis Function
(depfun). Dependencies affect deployability and originate from functions
called by the file. Deployability is affected by:

• File type — MATLAB, Java, MEX, and so on.

• File location — MATLAB, MATLAB toolbox, user code, and so on.

• File deployability — Whether the file is deployable outside of MATLAB

For more information about depfun, see “Dependency Analysis Function
(depfun)” on page 2-7.

2-5

2 MATLAB® Code Deployment

MATLAB® Compiler™ Build Process

2-6

Application Deployment Products and the Deployment Tool

3 Validates MEX-files. In particular, mexFunction entry points are verified.
For more details about MEX-file processing, see “MEX-Files, DLLs, or
Shared Libraries” on page 2-8.

4 Creates a CTF archive from the input files and their dependencies. For
more details about CTF archives see “Component Technology File (CTF
Archive)” on page 2-8.

5 Generates target-specific wrapper code. For example, a C main function
requires a very different wrapper than the wrapper for a Java interface
class.

6 Invokes a third-party target-specific compiler to create the appropriate
binary software component (a standalone executable, a Java JAR file,
and so on).

Dependency Analysis Function (depfun)
MATLAB Compiler uses a dependency analysis function (depfun) to
determine the list of necessary files to include in the CTF package.
Sometimes, this process generates a large list of files, particularly when
MATLAB object classes exist in the compilation and depfun cannot resolve
overloaded methods at compile time. Dependency analysis also processes
include/exclude files on each pass (see the mcc flag “-a Add to Archive”).

Tip To improve compile time performance and lessen application size, prune
the path with “-N Clear Path”, “-p Add Directory to Path”. You can also
specify Toolboxes on Path in the deploytool Settings

For more information about depfun, addpath, and rmpath, see “Dependency
Analysis Function (depfun) and User Interaction with the Compilation Path”.

depfun searches for executable content such as:

• MATLAB files

• P-files

• Java classes and .jar files

2-7

2 MATLAB® Code Deployment

• .fig files

• MEX-files

depfun does not search for data files of any kind. You must manually include
data files in the search

MEX-Files, DLLs, or Shared Libraries
When you compile MATLAB functions containing MEX-files, ensure that
depfun can find them. Doing so allows you to avoid many common compilation
problems. In particular, note that:

• Because depfun cannot examine MEX-files, DLLs, or shared libraries to
determine their dependencies, explicitly include all executable files these
files require. To do so, use either the mcc -a option or the options on the
Advanced tab in the Deployment Tool under Settings.

• If you have any doubts that depfun can find a MATLAB function called by
a MEX-file, DLL, or shared library, then manually include that function.
To do so, use either the mcc -a option or by using the options on the
Advanced tab in the Deployment Tool under Settings.

• Not all functions are compatible with MATLAB Compiler. Check the file
mccExcludedFiles.log after your build completes. This file lists all
functions called from your application that you cannot deploy.

Component Technology File (CTF Archive)
Each application or shared library you produce using MATLAB Compiler
has an associated Component Technology File (CTF) archive. The archive
contains all the MATLAB based content (MATLAB files, MEX-files, and so
on) associated with the component.

MATLAB Compiler also embeds a CTF archive in each generated binary. The
CTF houses all deployable files. All MATLAB files encrypt in the CTF archive
using the Advanced Encryption Standard (AES) cryptosystem.

If you choose to extract the CTF archive as a separate file, the files remain
encrypted. For more information on how to extract the CTF archive refer to
the references in the following table.

2-8

Application Deployment Products and the Deployment Tool

Information on CTF Archive Embedding/Extraction and Component
Cache

Product Refer to

MATLAB Compiler “MCR Component Cache and CTF
Archive Embedding”

MATLAB Builder NE “MCR Component Cache and CTF
Archive Embedding” on page 5-9

MATLAB Builder JA “Using MCR Component Cache and
MWComponentOptions”

MATLAB Builder EX Using MCR Component Cache and
CTF Archive Embedding

2-9

2 MATLAB® Code Deployment

2-10

Application Deployment Products and the Deployment Tool

Additional Details
Multiple CTF archives, such as those generated with COM, .NET, or Excel
components, can coexist in the same user application. You cannot, however,
mix and match the MATLAB files they contain. You cannot combine
encrypted and compressed MATLAB files from multiple CTF archives into
another CTF archive and distribute them.

All the MATLAB files from a given CTF archive associate with a unique
cryptographic key. MATLAB files with different keys, placed in the same
CTF archive, do not execute. If you want to generate another application
with a different mix of MATLAB files, recompile these MATLAB files into a
new CTF archive.

MATLAB Compiler deletes the CTF archive and generated binary following
a failed compilation, but only if these files did not exist before compilation
initiates. Run help mcc -K for more information.

Note CTF archives are extracted by default to
user_name\AppData\Local\Temp\userid\mcrCachen.nn.

Caution Release Engineers and Software Configuration Managers:
Do not use build procedures or processes that strip shared libraries on CTF
archives. If you do, you can possibly strip the CTF archive from the binary,
resulting in run-time errors for the driver application.

2-11

2 MATLAB® Code Deployment

Writing Deployable MATLAB Code

In this section...

“Compiled Applications Do Not Process MATLAB Files at Runtime” on
page 2-12

“Do Not Rely on Changing Directory or Path to Control the Execution of
MATLAB Files” on page 2-13

“Use ismcc and isdeployed Functions To Execute Deployment-Specific Code
Paths” on page 2-14

“Gradually Refactor Applications That Depend on Noncompilable
Functions” on page 2-14

“Do Not Create or Use Nonconstant Static State Variables” on page 2-15

“Get Proper Licenses for Toolbox Functionality You Want to Deploy” on
page 2-15

Compiled Applications Do Not Process MATLAB Files
at Runtime
MATLAB Compiler secures your code against unauthorized changes.
Deployable MATLAB files are suspended or frozen at the time MATLAB
Compiler encrypts them—they do not change from that point onward. This
does not mean that you cannot deploy a flexible application—it means that
you must design your application with flexibility in mind. If you want the end
user to be able to choose between two different methods, for example, both
methods must be available in the built component.

The MCR only works on MATLAB code that was encrypted when the
component was built. Any function or process that dynamically generates
new MATLAB code will not work against the MCR.

Some MATLAB toolboxes, such as the Neural Network Toolbox™ product,
generate MATLAB code dynamically. Because the MCR only executes
encrypted MATLAB files, and the Neural Network Toolbox generates
unencrypted MATLAB files, some functions in the Neural Network Toolbox
cannot be deployed.

2-12

Writing Deployable MATLAB® Code

Similarly, functions that need to examine the contents of a MATLAB function
file cannot be deployed. HELP, for example, is dynamic and not available in
deployed mode. You can use LOADLIBRARY in deployed mode if you provide
it with a MATLAB function prototype.

Instead of compiling the function that generates the MATLAB code and
attempting to deploy it, perform the following tasks:

1 Run the code once in MATLAB to obtain your generated function.

2 Compile the MATLAB code with MATLAB Compiler, including the
generated function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function
handles.

If you require the ability to create MATLAB code for dynamic run time
processing, your end users must have an installed copy of MATLAB.

Do Not Rely on Changing Directory or Path to Control
the Execution of MATLAB Files
In general, good programming practices advise against redirecting a program
search path dynamically within the code. Many developers are prone to this
behavior since it mimics the actions they usually perform on the command
line. However, this can lead to problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are
fixed and cannot change. Therefore, any attempts to change these paths
(using the cd command or the addpath command) fails

If you find you cannot avoid placing addpath calls in your MATLAB code, use
ismcc and isdeployed. See the next section for details.

2-13

2 MATLAB® Code Deployment

Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths
The isdeployed function allows you to specify which portion of your MATLAB
code is deployable, and which is not. Such specification minimizes your
compilation errors and helps create more efficient, maintainable code.

For example, you find it unavoidable to use addpath when writing your
startup.m. Using ismcc and isdeployed, you specify when and what is
compiled and executed.

For an example of using isdeployed, see “Passing Arguments to and from
a Standalone Application”.

Gradually Refactor Applications That Depend on
Noncompilable Functions
Over time, refactor, streamline, and modularize MATLAB code containing
non-compilable or non-deployable functions that use ismcc and isdeployed.
Your eventual goal is “graceful degradation” of non-deployable code. In
other words, the code must present the end user with as few obstacles to
deployment as possible until it is practically eliminated.

Partition your code into design-time and run time code sections:

• Design-time code is code that is currently evolving. Almost all code goes
through a phase of perpetual rewriting, debugging, and optimization. In
some toolboxes, such as the Neural Network Toolbox product, the code goes
through a period of self-training as it reacts to various data permutations
and patterns. Such code is almost never designed to be deployed.

• Run-time code, on the other hand, has solidified or become stable—it is in a
finished state and is ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be
deployed or for code that calls undeployable code.

2-14

Writing Deployable MATLAB® Code

Do Not Create or Use Nonconstant Static State
Variables
Avoid using the following:

• Global variables in MATLAB code

• Static variables in MEX-files

• Static variables in Java code

The state of these variables is persistent and shared with everything in the
process.

When deploying applications, using persistent variables can cause problems
because the MCR process runs in a single thread. You cannot load more than
one of these non-constant, static variables into the same process. In addition,
these static variables do not work well in multithreaded applications.

When programming with the builder components, you should be aware that
an instance of the MCR is created for each instance of a new class. If the same
class is instantiated again using a different variable name, it is attached to
the MCR created by the previous instance of the same class. In short, if an
assembly contains n unique classes, there will be maximum of n instances
of MCRs created, each corresponding to one or more instances of one of the
classes.

If you must use static variables, bind them to instances. For example,
defining instance variables in a Java class is preferable to defining the
variable as static.

Note This guideline does not apply to MATLAB Builder EX. When
programming with Microsoft Excel, you can assign global variables to large
matrices that persist between calls.

Get Proper Licenses for Toolbox Functionality You
Want to Deploy
You must have a valid MathWorks® license for toolboxes you use to create
deployable components.

2-15

2 MATLAB® Code Deployment

If you do not have a valid license for your toolbox, you cannot create a
deployable component with it.

2-16

How the Deployment Products Process MATLAB® Function Signatures

How the Deployment Products Process MATLAB Function
Signatures

In this section...

“MATLAB Function Signature” on page 2-17

“MATLAB Programming Basics” on page 2-17

MATLAB Function Signature
MATLAB supports multiple signatures for function calls.

The generic MATLAB function has the following structure:

function [Out1,Out2,...,varargout]=foo(In1,In2,...,varargin)

To the left of the equal sign, the function specifies a set of explicit and optional
return arguments.

To the right of the equal sign, the function lists explicit input arguments
followed by one or more optional arguments.

All arguments represent a specific MATLAB type.

When the compiler or builder product processes your MATLAB code, it creates
several overloaded methods that implement the MATLAB functions. Each
of these overloaded methods corresponds to a call to the generic MATLAB
function with a specific number of input arguments.

In addition to these methods, the builder creates another method that defines
the return values of the MATLAB function as an input argument. This
method simulates the feval external API interface in MATLAB.

MATLAB Programming Basics

Creating a Deployable MATLAB Function
Virtually any calculation that you can create in MATLAB can be deployed, if
it resides in a function. For example:

2-17

2 MATLAB® Code Deployment

>> 1 + 1

cannot be deployed.

However, the following calculation:

function result = addSomeNumbers()
result = 1+1;

end

can be deployed because the calculation now resides in a function.

Taking Inputs into a Function

You typically pass inputs to a function. You can use primitive data type as an
input into a function.

To pass inputs, put them in parentheses. For example:

function result = addSomeNumbers(number1, number2)
result = number1 + number2;

end

2-18

MATLAB Library Loading

MATLAB Library Loading

Note It is important to understand the difference between the following:

• MATLAB loadlibrary function — Loads shared library into MATLAB.

• Operating system loadlibrary function — Loads specified Windows
or UNIX operating system module into the address space of the calling
process.

With MATLAB Compiler version 4.0 (R14) and later, you can use MATLAB
file prototypes as described below to load your library in a compiled
application. Loading libraries using H-file headers is not supported in
compiled applications. This behavior occurs when loadlibrary is compiled
with the header argument as in the statement:

loadlibrary(library, header)

In order to work around this issue, execute the following command at the
MATLAB command prompt:

loadlibrary(library, header, 'mfilename', 'mylibrarymfile');

where mylibrarymfile is the name of a MATLAB file you would like to use
when loading this library. This step only needs to be performed once to
generate a MATLAB file for the library.

In the code that is be compiled, you can now call loadlibrary with the
following syntax:

loadlibrary(library, @mylibrarymfile, 'alias', alias)

With MATLAB Compiler versions 4.0.1 (R14+) and later, generated MATLAB
files will automatically be included in the CTF file as part of the compilation
process. For MATLAB Compiler versions 4.0 (R14) and later, include your
library MATLAB file in the compilation with the -a option with mcc.

2-19

2 MATLAB® Code Deployment

Caution With MATLAB Compiler Version 3.0 (R13SP1) and earlier, you
cannot compile calls to loadlibrary because of general restrictions and
limitations of the product.

2-20

MATLAB Data File (MAT Files)

MATLAB Data File (MAT Files)

In this section...

“Explicitly Including MAT files Using the %#function Pragma” on page 2-21

“Load and Save Functions” on page 2-21

“MATLAB Objects” on page 2-24

Explicitly Including MAT files Using the %#function
Pragma
MATLAB Compiler excludes MAT files from “Dependency Analysis Function
(depfun)” on page 2-7 by default.

If you want MATLAB Compiler to explicitly inspect data within a MAT file,
you need to specify the %#function pragma when writing your MATLAB code.

For example, if you are creating a solution with Neural Network Toolbox,
you need to use the %#function pragma within your GUI code to include a
dependency on the gmdistribution class, for instance.

Load and Save Functions
If your deployed application uses MATLAB data files (MAT-files), it is helpful
to code LOAD and SAVE functions to manipulate the data and store it for later
processing.

• Use isdeployed to determine if your code is running in or out of the
MATLAB workspace.

• Specify the data file by either using WHICH (to locate its full path name)
define it relative to the location of ctfroot.

• All MAT-files are unchanged after mcc runs. These files are not encrypted
when written to the CTF archive.

For more information about CTF archives, see “Component Technology File
(CTF Archive)” on page 2-8.

See the ctfroot reference page for more information about ctfroot.

2-21

2 MATLAB® Code Deployment

Use the following example as a template for manipulating your MATLAB
data inside, and outside, of MATLAB.

Using Load/Save Functions to Process MATLAB Data for
Deployed Applications
The following example specifies three MATLAB data files:

• user_data.mat

• userdata/extra_data.mat

• ../externdata/extern_data.mat

1 Navigate to install_root\extern\examples\Data_Handling.

2 Compile ex_loadsave.m with the following mcc command:

mcc -mv ex_loadsave.m -a 'user_data.mat' -a
'./userdata/extra_data.mat' -a
'../externdata/extern_data.mat'

ex_loadsave.m.

function ex_loadsave

% This example shows how to work with the

% "load/save" functions on data files in

% deployed mode. There are three source data files

% in this example.

% user_data.mat

% userdata/extra_data.mat

% ../externdata/extern_data.mat

%

% Compile this example with the mcc command:

% mcc -m ex_loadsave.m -a 'user_data.mat' -a

% './userdata/extra_data.mat'

% -a '../externdata/extern_data.mat'

% All the folders under the current main MATLAB file directory will

% be included as

% relative path to ctfroot; All other folders will have the

% folder

% structure included in the ctf archive file from root of the

2-22

MATLAB Data File (MAT Files)

% disk drive.

%

% If a data file is outside of the main MATLAB file path,

% the absolute path will be

% included in ctf and extracted under ctfroot. For example:

% Data file

% "c:\$matlabroot\examples\externdata\extern_data.mat"

% will be added into ctf and extracted to

% "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".

%

% All mat/data files are unchanged after mcc runs. There is

% no excryption on these user included data files. They are

% included in the ctf archive.

%

% The target data file is:

% ./output/saved_data.mat

% When writing the file to local disk, do not save any files

% under ctfroot since it may be refreshed and deleted

% when the application isnext started.

%==== load data file =============================

if isdeployed

% In deployed mode, all file under CTFRoot in the path are loaded

% by full path name or relative to $ctfroot.

% LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));

% LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));

LOADFILENAME1=which(fullfile('user_data.mat'));

LOADFILENAME2=which(fullfile('extra_data.mat'));

% For external data file, full path will be added into ctf;

% you don't need specify the full path to find the file.

LOADFILENAME3=which(fullfile('extern_data.mat'));

else

%running the code in MATLAB

LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','user_data.mat');

LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','userdata','extra_data.mat');

LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',

'externdata','extern_data.mat');

end

2-23

2 MATLAB® Code Deployment

% Load the data file from current working directory

disp(['Load A from : ',LOADFILENAME1]);

load(LOADFILENAME1,'data1');

disp('A= ');

disp(data1);

% Load the data file from sub directory

disp(['Load B from : ',LOADFILENAME2]);

load(LOADFILENAME2,'data2');

disp('B= ');

disp(data2);

% Load extern data outside of current working directory

disp(['Load extern data from : ',LOADFILENAME3]);

load(LOADFILENAME3);

disp('ext_data= ');

disp(ext_data);

%==== multiple the data matrix by 2 ==============

result = data1*data2;

disp('A * B = ');

disp(result);

%==== save the new data to a new file ===========

SAVEPATH=strcat(pwd,filesep,'output');

if (~isdir(SAVEPATH))

mkdir(SAVEPATH);

end

SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');

disp(['Save the A * B result to : ',SAVEFILENAME]);

save(SAVEFILENAME, 'result');

MATLAB Objects
When working with MATLAB objects, remember to include the following
statement in your MAT file:

%#function class_constructor

2-24

MATLAB Data File (MAT Files)

Using the %#function pragma in this manner forces depfun to load needed
class definitions, enabling the MCR to successfully load the object.

2-25

2 MATLAB® Code Deployment

2-26

3

Component Building

• “Supported Compilation Targets” on page 3-2

• “The Deployment Tool GUI” on page 3-4

• “The mcc Command Line” on page 3-5

• “Examples” on page 3-8

• “For More Information” on page 3-9

3 Component Building

Supported Compilation Targets

In this section...

“.NET Component” on page 3-2

“COM Components” on page 3-2

MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Uses tools to create a component that
is used by the .NET developer

.NET Component
MATLAB Builder NE supports compilation (building) of .NET components
through CLS compliant language wrapper generation.

Common Language Specification (CLS) Compliancy
CLS is an acronym for Common Language Specification, a subset of language
features supported by the .NET common language Runtime (CLR). MATLAB®

Builder™ NE classes are CLS compliant—they are designed to interoperate
with all .NET programming languages.

Use the builder to package MATLAB functions so that .NET programmers
can access them from any CLS-compliant language.

COM Components
You can also use the builder to create Component Object Model, or COM,
components. These components use a software architecture developed by
Microsoft® to build component-based applications. COM objects expose
interfaces that allow applications and other components to access the features
of the objects. You access COM objects through Microsoft Visual Basic, C++,

3-2

Supported Compilation Targets

or any language that supports COM objects. For more information about
creating and accessing COM components, see Chapter 12, “Creating and
Installing COM Components” and Chapter 13, “Programming with COM
Components Created by the MATLAB® Builder™ NE Product”.

3-3

3 Component Building

The Deployment Tool GUI
For a complete example of how to build .NET components using the graphical
interface, read “The Magic Square Example” on page 1-9 in the Chapter 1,
“Getting Started” chapter of this User’s Guide.

For information about how the graphical interface differs from the command
line interface, read “What Is the Difference Between the Deployment Tool and
the mcc Command Line?” on page 2-4 in the chapter Chapter 2, “MATLAB
Code Deployment”, also in this guide.

Watch a Video
Watch a video about deploying applications using MATLAB Builder NE.

3-4

The mcc Command Line

The mcc Command Line

In this section...

“Command-Line Syntax Description” on page 3-5

“Using the Deployment Tool GUI from the Command Line” on page 3-7

Command-Line Syntax Description
Instead of using the Deployment Tool to create .NET components, you can
use the mcc command.

The following command defines the complete mcc command syntax with all
required and optional arguments used to create a .NET component. Brackets
indicate optional parts of the syntax.

mcc - W 'dotnet:component_name,class_name,
0.0|framework_version, Private|Encryption_Key_Path,local|remote'
file1 [file2...fileN][class{class_name:file1
[,file2,...,fileN]},... [-d output_dir_path] -T link:lib

Note For complete information about the mcc command, including the -W
option, see mcc in the function reference section of this User’s Guide. To
learn more about the mcc command and all of its options, see the MATLAB
Compiler documentation.

.NET Bundle Files
You can simplify the command line used to create .NET components. To do so,
use the .NET Builder bundle file, named dotnet. Using this bundle file still
requires that you pass in the five parts (including local|remote) of the -W
argument text string; however, you do not have to specify the -T option.

The following example creates a .NET component called mycomponent
containing a single .NET class named myclass with methods foo and bar.
When used with the -B option, the word dotnet specifies the name of the
predefined .NET Builder bundle file.

3-5

3 Component Building

mcc -B 'dotnet:mycomponent,myclass,2.0,
encryption_keyfile_path,local'
foo.m bar.m

In this example, the builder uses the .NET Framework version 2.0 to
compile the component into a shared assembly using the key file specified in
encryption_keyfile_path to sign the shared component.

See “Supported Microsoft .NET Framework Versions” for a list of supported
framework versions.

Creating a .NET Component Namespace
The following example creates a .NET component from two MATLAB files
foo.m and bar.m.

mcc -B
'dotnet:mycompany.mygroup.mycomponent,myclass,0.0,Private,local'
foo.m bar.m

The example creates a .NET component named mycomponent that has the
following namespace: mycompany.mygroup. The component contains a single
.NET class, myclass, which contains methods foo and bar.

To use myclass, place the following statement in your code:

using mycompany.mygroup;

See “Supported Microsoft .NET Framework Versions” for a list of supported
framework versions.

Adding Multiple Classes to a Component
The following example creates a .NET component that includes more than
one class. This example uses the optional class{...} argument to the mcc
command.

mcc -B 'dotnet:mycompany.mycomponent,myclass,2.0,Private,local' foo.m bar.m

class{myclass2:foo2.m,bar2.m}

The example creates a .NET component named mycomponent with two classes:

3-6

The mcc Command Line

• myclass has methods foo and bar

• myclass2 has methods foo2 and bar2

See “Supported Microsoft .NET Framework Versions” for a list of supported
framework versions.

Using the Deployment Tool GUI from the Command
Line

Desired Results Command

Start Deployment Tool GUI with the
New/Open dialog box active

deploytool (default)
or
deploytool -n

Start Deployment Tool GUI and load
project_name

deploytool project_name.prj

Start Deployment Tool command line interface
and build project_name after initializing

deploytool -build project_name.prj

Start Deployment Tool command line interface
and package project_name after initializing

deploytool -package project_name.prj

Start Deployment Tool and package an
existing project from the Command Line
Interface. Specifying the package_name is
optional. By default, a project is packaged into
a .zip file. On Windows, if the package_name
ends with .exe, the project is packaged into
a self-extracting .exe.

deploytool -package project_name.prj
package_name

Display MATLAB Help for the deploytool
command

deploytool -?

3-7

3 Component Building

Examples
See “C# Integration Examples” on page 4-31 and “Microsoft® Visual Basic®

Integration Examples” on page 4-70 for complete examples of how to build
and integrate .NET components.

3-8

For More Information

For More Information

If you want to... See...

Learn how to build a component
and perform basic integration tasks
using C# code

Chapter 1, “Getting Started”

• Basic MATLAB Programmer
tasks

• How the deployment products
process your MATLAB functions

• How the deployment products
work together

Chapter 2, “MATLAB Code
Deployment”

Advanced integration tasks for the
.NET Developer

Chapter 4, “Component Integration”

The MATLAB Component Runtime
(MCR)

“Distribute MATLAB Code Using
the MATLAB Compiler Runtime
(MCR)” on page 5-2

3-9

3 Component Building

3-10

4

Component Integration

• “Common Integration Tasks” on page 4-2

• “Application Coding” on page 4-3

• “C# Integration Examples” on page 4-31

• “Microsoft® Visual Basic® Integration Examples” on page 4-70

• “Component Access On Another Computer” on page 4-104

• “For More Information” on page 4-105

4 Component Integration

Common Integration Tasks
.NET Developer

Role Knowledge Base Responsibilities

.NET
Developer

• Little to no MATLAB
experience

• Moderate IT experience

• .NET expert

• Minimal access to IT
systems

• Integrates deployed
component with the rest
of the .NET application

In “The Magic Square Example” on page 1-9, and in “Integrating Your
Component into a .NET Class Using Microsoft® Visual Studio®” on page 1-27
in particular, steps are illustrated that cover the basics of customizing your
code in preparation for integrating your deployed .NET component into a
large-scale enterprise application. These steps include:

• Installing the MATLAB Compiler Runtime (MCR) on end user computers

• Creating a Microsoft Visual Studio project

• Creating references to the component and to the MWArray API

• Specifying component assemblies and namespaces

• Initializing and instantiating your classes

• Invoking the component using some implicit data conversion techniques

• Handling errors using a basic try-catch block.

Watch a Video
Watch a video that interactively demonstrates how to perform these basic
steps on the MATLAB Builder NE product page.

4-2

http://www.mathworks.com/products/netbuilder/

Application Coding

Application Coding

In this section...

“Using C# Code In an Integrated .NET Component” on page 4-3

“Data Conversion” on page 4-5

“MATLAB API Functions in a C# Program” on page 4-17

“Object Passing by Reference” on page 4-19

“Real or Imaginary Components Within Complex Arrays” on page 4-22

“Jagged Array Processing” on page 4-24

“Field Additions to Data Structures and Data Structure Arrays” on page
4-25

“MATLAB Array Indexing” on page 4-25

“Console Application Blocking When Creating Figures” on page 4-26

“Error Handling” on page 4-28

“Explicitly Freeing Resources With Dispose” on page 4-29

Using C# Code In an Integrated .NET Component
Before you begin integrating your component code with your .NET application,
it is helpful to understand how the elements of the Deployment Tool project
map to the class names in your generated wrapper code, and the naming
conventions used for class and methods names in this code.

Classes and Methods
The builder project contains the files and settings needed by the MATLAB
Builder NE product to create a deployable .NET component. A project
specifies information about classes and methods, including the MATLAB
functions to be included.

The builder transforms MATLAB functions that are specified in the
component’s project to methods belonging to a managed class.

4-3

4 Component Integration

When creating a component, you must provide one or more class names as
well as a component name. The component name also specifies the name of
the assembly that implements the component. The class name denotes the
name of the class that encapsulates MATLAB functions.

To access the features and operations provided by the MATLAB functions,
instantiate the managed class generated by the builder, and then call the
methods that encapsulate the MATLAB functions.

Component and Class Naming Conventions
Typically you should specify names for components and classes that will be
clear to programmers who use your components. For example, if you are
encapsulating many MATLAB functions, it helps to determine a scheme of
function categories and to create a separate class for each category. Also, the
name of each class should be descriptive of what the class does.

The .NET Framework General Reference recommends the use of Pascal case
for capitalizing the names of identifiers of three or more characters. That
is, the first letter in the identifier and the first letter of each subsequent
concatenated word are capitalized. For example:

MakeSquare

In contrast, MATLAB programmers typically use all lowercase for names
of functions. For example:

makesquare

By convention, the MATLAB Builder NE examples use Pascal case.

Valid characters are any alpha or numeric characters, as well as the
underscore (_) character.

About Version Control
The builder supports the standard versioning capabilities provided by the
.NET Framework.

4-4

http://msdn.microsoft.com/library/default.asp?url=/library/

Application Coding

Note You can make side-by-side invocations of multiple versions of a
component within the same application only if they access the same version
of the MCR.

Data Conversion
There are many instances when you may need to convert various native data
types to types compatible with MATLAB. Use this section as a guideline to
performing some of these basic tasks.

See “Data Conversion Rules” on page 10-4 for complete tables detailing
type-to-type data conversion rules using MATLAB Builder NE.

Tip Learn about creating type-safe interfaces for .NET components, in order
to avoid data conversion tasks with MWArray. See Chapter 6, “Type-Safe
Interfaces, WCF, and MEF” for details.

Managing Data Conversion Issues with MATLAB Builder NE
Data Conversion Classes
To support data conversion between managed types and MATLAB types, the
builder provides a set of data conversion classes derived from the abstract
class, MWArray.

The MWArray data conversion classes allow you to pass most native .NET
value types as parameters directly without using explicit data conversion.
There is an implicit cast operator for most native numeric and string types
that will convert the native type to the appropriate MATLAB array.

When you invoke a method on a component, the input and output parameters
are a derived type of MWArray. To pass parameters, you can either instantiate
one of the MWArray subclasses explicitly, or, in many cases, pass the
parameters as a managed data type and rely on the implicit data conversion
feature of .NET Builder.

4-5

4 Component Integration

Overview of Classes and Methods in the Data Conversion Class
Hierarchy. To support MATLAB data types, the MATLAB Builder NE
product provides the MWArray data conversion classes in the MATLAB
Builder NE MWArray assembly. You reference this assembly in your managed
application to convert native arrays to MATLAB arrays and vice versa.

See the MWArray API documentation on the MATLAB Builder NE
Documentation Roadmap page (on the Web on in the product help) for full
details on the classes and methods provided.

The data conversion classes are built as a class hierarchy that represents the
major MATLAB array types.

Note See “Overview” on page 10-17 for an introduction to the classes and see
MWArray Class Library Reference (available online only) for details about
this class library.

The root of the hierarchy is the MWArray abstract class. The MWArray
class has the following subclasses representing the major MATLAB types:
MWNumericArray, MWLogicalArray, MWCharArray, MWCellArray, and
MWStructArray.

MWArray and its derived classes provide the following functionality:

• Constructors and destructors to instantiate and dispose of MATLAB arrays

• Properties to get and set the array data

• Indexers to support a subset of MATLAB array indexing

• Implicit and explicit data conversion operators

• General methods

Using Cell and Struct Arrays with MWArray. You must use .NET
Remoting to integrate .NET cell and struct arrays with MWArray.

See “The Native .NET Cell and Struct Example” on page 8-29 for more
information and a complete end-to-end example.

4-6

../MWArrayAPI/HTML/index.html

Application Coding

Automatic Casting to MATLAB Types

Note Because the conversion process is automatic (in most cases), you do not
need to understand the conversion process to pass and return arguments with
MATLAB Builder NE components.

In most instances, if a native .NET primitive or array is used as an input
parameter in a C# program, the builder transparently converts it to an
instance of the appropriate MWArray class before it is passed on to the
component method. The builder can convert most CLS-compliant string,
numeric type, or multidimensional array of these types to an appropriate
MWArray type.

Note This conversion is transparent in C# applications, but might require
an explicit casting operator in other languages, for example, op_implicit
in Visual Basic.

Here is an example. Consider the .NET statement:

result = theFourier.plotfft(3, data, interval);

In this statement the third argument, namely interval, is of the .NET
native type System.Double. The builder casts this argument to a MATLAB
1-by-1 double MWNumericArray type (which is a wrapper class containing a
MATLAB double array).

See “Data Conversion Rules” on page 10-4 for a list of all the data types that
are supported along with their equivalent types in the MATLAB product.

Note There are some data types commonly used in the MATLAB product
that are not available as native .NET types. Examples are cell arrays,
structure arrays, and arrays of complex numbers. Represent these array
types as instances of MWCellArray, MWStructArray, and MWNumericArray,
respectively.

4-7

4 Component Integration

Multidimensional Array Processing in MATLAB and .NET. MATLAB and
.NET implement different indexing strategies for multidimensional arrays.
When you create a variable of type MWNumericArray, MATLAB automatically
creates an equivalent array, using its own internal indexing. For example,
MATLAB indexes using this schema:

(row column page1 page2 ...)

while .NET indexes as follows:

(... page2 page1 row column)

Given the multi-dimensional MATLAB myarr:

>> myarr(:,:,1) = [1, 2, 3; 4, 5, 6];
>> myarr(:,:,2) = [7, 8, 9; 10, 11, 12];
>> myarr

myarr(:,:,1) =

1 2 3
4 5 6

myarr(:,:,2) =

7 8 9
10 11 12

You would code this equivalent in .NET:

double[,,] myarr = {{{1.000000, 2.000000, 3.000000},
{4.000000, 5.000000, 6.000000}}, {{7.000000, 8.000000,
9.000000}, {10.000000, 11.000000, 12.000000}}};

Manual Data Conversion from Native Types to MATLAB Types

• “Native Data Conversion” on page 4-9

4-8

Application Coding

• “Type Specification” on page 4-10

• “Optional Argument Specification” on page 4-10

• “Pass a Variable Number of Outputs” on page 4-12

Native Data Conversion. The builder provides MATLAB array classes
in order to facilitate data conversion between native data and compiled
MATLAB functions.

This example explicitly creates a numeric constant using the constructor for
the MWNumericArray class with a System.Int32 argument. This variable can
then be passed to one of the generated MATLAB Builder NE methods.

int data = 24;
MWNumericArray array = new MWNumericArray(data);
Console.WriteLine("Array is of type " + array.NumericType);

When you run this example, the results are:

Array is of type double

In this example, the native integer (int data) is converted to an
MWNumericArray containing a 1-by-1 MATLAB double array, which is the
default MATLAB type.

Tip To preserve the integer type (rather than convert to the default double
type), you can use the constructor provided by MWNumericArray for this
purpose. Preserving the integer type can help to save space.

The MATLAB Builder NE product does not support some MATLAB array
types because they are not CLS-compliant. See “Unsupported MATLAB Array
Types” on page 10-16 for a list of the unsupported types.

For more information about the concepts involved in data conversion, see
“Managing Data Conversion Issues with MATLAB® Builder™ NE Data
Conversion Classes” on page 4-5.

4-9

4 Component Integration

Type Specification. If you want to create a MATLAB numeric array of a
specific type, set the optional makeDouble argument to False. The native type
then determines the type of the MATLAB array that is created.

Here, the code specifies that the array should be constructed as a MATLAB
1-by-1 16-bit integer array:

short data = 24;
MWNumericArray array = new MWNumericArray(data, false);
Console.WriteLine("Array is of type " + array.NumericType);

Running this example produces the following results:

Array is of type int16

Optional Argument Specification. In the MATLAB product, varargin and
varargout are used to specify arguments that are not required. Consider the
following MATLAB function:

function y = mysum(varargin)
y = sum([varargin{:}]);

This function returns the sum of the inputs. The inputs are provided as a
varargin, which means that the caller can specify any number of inputs to
the function. The result is returned as a scalar double array.

For the mysum function, the MATLAB Builder NE product generates the
following interfaces:

// Single output interfaces
public MWArray mysum()
public MWArray mysum(params MWArray[] varargin)
// Standard interface
public MWArray[] mysum(int numArgsOut)
public MWArray[] mysum(int numArgsOut,

params MWArray[] varargin)
// feval interface
public void mysum(int numArgsOut, ref MWArray ArgsOut,

params MWArray[] varargin)

4-10

Application Coding

The varargin arguments can be passed as either an MWArray[], or as a list of
explicit input arguments. (In C#, the params modifier for a method argument
specifies that a method accepts any number of parameters of the specific
type.) Using params allows your code to add any number of optional inputs to
the encapsulated MATLAB function.

Here is an example of how you might use the single output interface of the
mysum method in a .NET application:

static void Main(string[] args]
{
MWArray sum= null;
MySumClass mySumClass = null;
try

{
mySumClass= new MySumClass();
sum= mySumClass.mysum((double)2, 4);
Console.WriteLine("Sum= {0}", sum);
sum= mySumClass.mysum((double)2, 4, 6, 8);
Console.WriteLine("Sum= {0}", sum);

}
}

The number of input arguments can vary.

Note For this particular signature, you must explicitly cast the first
argument to MWArray or a type other than integer. Doing this distinguishes
the signature from the method signature, which takes an integer as the first
argument. If the first argument is not explicitly cast to MWArray or as a
type other than integer, the argument can be mistaken as representing the
number of output arguments.

Pass Input Arguments

The following examples show generated code for the myprimes MATLAB
function, which has the following definition:

function p = myprimes(n)

4-11

4 Component Integration

p = primes(n);

Construct a Single Input Argument

The following sample code constructs data as a MWNumericArray, to be passed
as input argument:

MWNumericArray data = 5;
MyPrimesClass myClass = new MyPrimesClass();
MWArray primes = myClass.myprimes(data);

Pass a Native .NET Type

This example passes a native double type to the function.

MyPrimesClass myClass = new MyPrimesClass();
MWArray primes = myClass.myprimes((double)13);

The input argument is converted to a MATLAB 1-by-1 double array, as
required by the MATLAB function. This is the default conversion rule for a
native double type (see “Data Conversion Rules” on page 10-4 for a discussion
of the default data conversion for all supported .NET types).

Use the feval Interface

This interface passes both input and output arguments on the right-hand
side of the function call. The output argument primes must be preceded by
a ref attribute.

MyPrimesClassmyClass = new MyPrimesClass();
MWArray[] maxPrimes = new MWArray[1];
maxPrimes[0] = new MWNumericArray(13);
MWArray[] primes = new MWArray[1];
myClass.myprimes(1, ref primes, maxPrimes);

Pass a Variable Number of Outputs. When present, varargout
arguments are handled in the same way that varargin arguments are
handled. Consider the following MATLAB function:

function varargout = randvectors()
for i=1:nargout

4-12

Application Coding

varargout{i} = rand(1, i);
end

This function returns a list of random double vectors such that the length
of the ith vector is equal to i. The builder generates a .NET interface to
this function as follows:

public void randvectors()
public MWArray[] randvectors(int numArgsOut)
public void randvectors(int numArgsOut, ref MWArray[] varargout)

Usage Example

Here, the standard interface is used and two output arguments are requested:

MyVarargOutClass myClass = new MyVarargOutClass();
MWArray[] results = myClass.randvectors(2);
Console.WriteLine("First output= {0}", results[0]);
Console.WriteLine("Second output= {0}", results[1]);

Return Value Handling
The previous examples show guidelines to use if you know the type
and dimensionality of the output argument. Sometimes, in MATLAB
programming, this information is unknown, or can vary. In this case, the code
that calls the method might need to query the type and dimensionality of
the output arguments.

There are two ways to make the query:

• Use .NET reflection to query any object for its type.

• Use any of several methods provided by the MWArray class to query
information about the underlying MATLAB array.

.NET Reflection. You can use reflection to dynamically create an instance of
a type, bind the type to an existing object, or get the type from an existing
object. You can then invoke the type’s methods or access its fields and
properties. See the MSDN Library for more information about reflection.

4-13

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconReflectionOverview.asp

4 Component Integration

The following code sample calls the myprimes method, and then determines
the type using reflection. The example assumes that the output is returned as
a numeric vector array but the exact numeric type is unknown.

public void GetPrimes(int n)
{
MWArray primes= null;
MyPrimesClass myPrimesClass= null;
try
{
myPrimesClass= new MyPrimesClass();
primes= myPrimesClass.myprimes((double)n);
Array primesArray= ((MWNumericArray)primes).
ToVector(MWArrayComponent.Real);

if (primesArray is double[])
{
double[] doubleArray= (double[])primesArray;
/* Do something with doubleArray . . . */
}

else if (primesArray is float[])
{
float[] floatArray= (float[])primesArray;
/* Do something with floatArray . . . */
}

else if (primesArray is int[])
{
int[] intArray= (int[])primesArray;
/*Do something with intArray . . . */
}

else if (primesArray is long[])
{
long[] longArray= (long[])primesArray;
/*Do something with longArray . . . */
}

else if (primesArray is short[])
{
short[] shortArray= (short[])primesArray;
/*Do something with shortArray . . . */
}

else if (primesArray is byte[])

4-14

Application Coding

{
byte[] byteArray= (byte[])primesArray;
/*Do something with byteArray . . . */
}

else
{
throw new ApplicationException("
Bad type returned from myprimes");

}
}

}

The example uses the toVector method to return a .NET primitive array
(primesArray), which represents the underlying MATLAB array. See the
following code fragment from the example:

primes= myPrimesClass.myprimes((double)n);
Array primesArray= ((MWNumericArray)primes).
ToVector(MWArrayComponent.Real);

Note The toVector is a method of the MWNumericArray class. It returns a
copy of the array component in column major order. The type of the array
elements is determined by the data type of the numeric array.

MWArray Query. The next example uses the MWNumericArray NumericType
method, along with MWNumericType enumeration to determine the type of the
underlying MATLAB array. See the switch (numericType) statement.

public void GetPrimes(int n)
{
MWArray primes= null;
MyPrimesClass myPrimesClass= null;
try
{
myPrimesClass= new MyPrimesClass();
primes= myPrimesClass.myprimes((double)n);
if ((!primes.IsNumericArray) || (2 !=
primes.NumberofDimensions))

4-15

4 Component Integration

{
throw new ApplicationException("Bad type returned
by mwprimes");

}
MWNumericArray _primes= (MWNumericArray)primes;
MWNumericType numericType= _primes.NumericType;
Array primesArray= _primes.ToVector(
MWArrayComponent.Real);

switch (numericType)
{
case MWNumericType.Double:
{
double[] doubleArray= (double[])primesArray;
/* (Do something with doubleArray . . .) */
break;
}

case MWNumericType.Single:
{
float[] floatArray= (float[])primesArray;
/* (Do something with floatArray . . .) */
break;
}

case MWNumericType.Int32:
{
int[] intArray= (int[])primesArray;
/* (Do something with intArray . . .) */
break;
}

case MWNumericType.Int64:
{
long[] longArray= (long[])primesArray;
/* (Do something with longArray . . .) */
break;
}

case MWNumericType.Int16:
{
short[] shortArray= (short[])primesArray;
/* (Do something with shortArray . . .) */
break;
}

4-16

Application Coding

case MWNumericType.UInt8:
{
byte[] byteArray= (byte[])primesArray;
/* (Do something with byteArray . . .) */
break;
}

default:
{
throw new ApplicationException("Bad type returned
by myprimes");

}
}

}
}

The code in the example also checks the dimensionality by calling
NumberOfDimensions; see the following code fragment:

if ((!primes.IsNumericArray) || (2 !=
primes.NumberofDimensions))
{
throw new ApplicationException("Bad type returned
by mwprimes");

}

This call throws an exception if the array is not numeric and of the proper
dimension.

MATLAB API Functions in a C# Program

• “Overview” on page 4-17

• “About Building Engine Applications ” on page 4-18

• “MATLAB Engine API in a C# Program” on page 4-18

Overview
You include functions from MATLAB APIs, such as the Engine API, in
your C# code by using the DllImport attribute to import functions from
libeng.dll (written in unmanaged C) and then declaring those functions as

4-17

4 Component Integration

C# equivalents. The imported Engine functions are called using the P/Invoke
mechanism, as illustrated in the example below.

About Building Engine Applications
For detailed information about using an IDE to build engine applications, see
“Specifying Engine Libraries” and “Files Required by Engine Applications” in
MATLAB External Interfaces.

MATLAB Engine API in a C# Program

1 Open Microsoft Visual Studio .NET.

2 Select File > New > Project.

3 Select Visual C# Applications in the left pane and Console Application
in the right pane. Click OK.

4 Auto-generated code appears. Replace the auto-generated code with this
code and run:

using System;
using System.Text;
using System.Runtime.InteropServices;

namespace ConsoleApplication8
{

class MatlabEng
{

[DllImport("libeng.dll")]
static extern IntPtr engOpen(string startcmd);

[DllImport("libeng.dll")]
static extern IntPtr engEvalString(IntPtr engine,

string Input);

public MatlabEng()
{

IntPtr engine;
engine = engOpen(null);

4-18

Application Coding

if (engine == IntPtr.Zero)
throw new NullReferenceException

("Failed to Initialize Engine");

engEvalString(engine, "surf(peaks)");
}

~MatlabEng()
{
}

}

class StartProg
{

public static void Main()
{

MatlabEng mat = new MatlabEng();
}

}
}

Object Passing by Reference

• “MATLAB Array” on page 4-19

• “Wrappering and Passing .NET Objects with MWObjectArray” on page 4-19

MATLAB Array
MWObjectArray, a special subclass of MWArray, lets you create a MATLAB
array that references .NET objects. For detailed usage information on this
class, constructor, and associated methods, see the MWObjectArray page in the
NDoc (the MWArray Class Library). You can also search for MWObjectArray in
the MATLAB Help browser Search field.

Wrappering and Passing .NET Objects with MWObjectArray
You can create a MATLAB code wrapper around .NET objects using
MWObjectArray. Use this technique to pass objects by reference to MATLAB

4-19

4 Component Integration

functions and return .NET objects. The examples in this section present some
common use cases.

Passing a .NET Object into a MATLAB Builder NE Component. To pass
an object into a MATLAB Builder NE component:

1 Write the MATLAB function that references a .NET type:

function addItem(hDictionary, key, value)

if ~isa(hDictionary,'System.Collections.Generic.IDictionary')

error('foo:IncorrectType',

... 'expecting a System.Collections.Generic.Dictionary');

end

hDictionary.Add(key, value);

end

2 Create a .NET object to pass to the MATLAB function:

Dictionary char2Ascii= new Dictionary();

char2Ascii.Add("A", 65);

char2Ascii.Add("B", 66);

3 Create an instance of MWObjectArray to wrap the .NET object:

MWObjectArray MWchar2Ascii=
new MWObjectArray(char2Ascii);

4 Pass the wrappered object to the MATLAB function:

myComp.addValue(MWchar2Ascii,'C', 67);

Returning a Custom .NET Object in a MATLAB Function Using a
Deployed .NET Builder Component . You can also use MWObjectArray
to clone an object inside a MATLAB Builder NE component. Continuing
with the example in “Passing a .NET Object into a MATLAB® Builder™ NE
Component” on page 4-20, perform the following steps:

1 Write the MATLAB function that references a .NET type:

4-20

Application Coding

function result= add(hMyDouble, value)

if ~isa(hMyDouble,'MyDoubleComp.MyDouble')

error('foo:IncorrectType', 'expecting a MyDoubleComp.MyDouble');

end

hMyDoubleClone= hMyDouble.Clone();

result= hMyDoubleClone.Add(value);

end

2 Create the object:

MyDouble myDouble= new MyDouble(75);

3 Create an instance of MWObjectArray to wrap the .NET object:

MWObjectArray MWdouble= new MWObjectArray(myDouble);

origRef = new MWObjectArray(hash);

4 Pass the wrappered object to the MATLAB function and retrieve the
returned cloned object:

MWObjectArray result=
(MWObjectArray)myComp.add(MWdouble, 25);

5 Unwrap the .NET object and print the result:

MyDouble doubleClone= (MyDouble)result.Object;

Console.WriteLine(myDouble.ToDouble());
Console.WriteLine(doubleClone.ToDouble());

Cloning an MWObjectArray. When calling the Clone method on
MWObjectArray, the following rules apply for the wrapped object.

• If the wrapped object is a ValueType, it is deep-copied.

• If an object is not a ValueType and implements ICloneable, the Clone
method for the object is called.

• The MemberwiseClone method is called on the wrapped object.

4-21

4 Component Integration

Calling Clone on MWObjectArray

MWObjectArray aDate = new MWObjectArray(new
DateTime(1, 1, 2010));

MWObjectArray clonedDate = aDate.Clone();

Optimization Example Using MWObjectArray. For a full example of
how to use MWObjectArray to create a reference to a .NET object and pass it
to a component, see the “Optimization Example” on page 4-63 (C#) and the
“Optimization Example (Visual Basic)” on page 4-97.

MWObjectArray and Application Domains. Every ASP .NET Web
application deployed to IIS is launched in a separate AppDomain.

The MATLAB .NET interface must support the .NET type wrapped by
MWObjectArray. If the MWObjectArray is created in the default AppDomain,
the wrapped type has no other restrictions.

If the MWObjectArray is not created in the default AppDomain, the wrapped
.NET type must be serializable. This limitation is imposed by the fact that the
object needs to be marshaled from the non-default AppDomain to the default
AppDomain in order for MATLAB to access it.

Real or Imaginary Components Within Complex
Arrays

• “Component Extraction” on page 4-22

• “Returning Values Using Component Indexing” on page 4-23

• “Assigning Values with Component Indexing” on page 4-24

• “Converting MATLAB Arrays to .NET Arrays Using Component Indexing”
on page 4-24

Component Extraction
When you access a complex array (an array made up of both real and
imaginary data), you extract both real and imaginary parts (called
components) by default. This method call, for example, extracts both real
and imaginary components:

4-22

Application Coding

MWNumericArray complexResult= complexDouble[1, 2];

It is also possible, when calling a method to return or assign a value, to
extract only the real or imaginary component of a complex matrix. To do this,
call the appropriate component indexing method.

Tip Learn about creating type-safe interfaces for .NET components, in order
to avoid data conversion tasks with MWArray. See Chapter 6, “Type-Safe
Interfaces, WCF, and MEF” for details.

This section describes how to use component indexing when returning or
assigning a value, and also describes how to use component indexing to
convert MATLAB arrays to .NET arrays using the ToArray or ToVector
methods.

Returning Values Using Component Indexing
The following section illustrates how to return values from full and sparse
arrays using component indexing.

Implementing Component Indexing on Full Complex Numeric Arrays.
To return the real or imaginary component from a full complex numeric array,
call the .real or .imaginary method on MWArrayComponent as follows:

complexResult= complexDouble[MWArrayComponent.Real, 1, 2];

complexResult= complexDouble[MWArrayComponent.Imaginary, 1, 2];

Implementing Component Indexing on Sparse Complex Numeric
Arrays (Microsoft Visual Studio 8 and Later). To return the real or
imaginary component of a sparse complex numeric array, call the .real or
.imaginary method MWArrayComponent as follows:

complexResult= sparseComplexDouble[MWArrayComponent.Real, 4, 3];

complexResult = sparseComplexDouble[MWArrayComponent.Imaginary, 4, 3];

4-23

4 Component Integration

Assigning Values with Component Indexing
The following section illustrates how to assign values to full and sparse arrays
using component indexing.

Implementing Component Indexing on Full Complex Numeric Arrays.
To assign the real or imaginary component to a full complex numeric array,
call the .real or .imaginary method MWArrayComponent as follows:

matrix[MWArrayComponent.Real, 2, 2]= 5;

matrix[MWArrayComponent.Imaginary, 2, 2]= 7:

Converting MATLAB Arrays to .NET Arrays Using Component
Indexing
The following section illustrates how to use the ToArray and ToVector
methods to convert full and sparse MATLAB arrays and vectors to .NET
arrays and vectors respectively.

Converting MATLAB Arrays to .NET Arrays. To convert MATLAB arrays
to .NET arrays call the toArray method with either the .real or .imaginary
method, as needed, on MWArrayComponent as follows:

Array nativeArray_real= matrix.ToArray(MWArrayComponent.Real);

Array nativeArray_imag= matrix.ToArray(MWArrayComponent.Imaginary);

Converting MATLAB Arrays to .NET Vectors. To convert MATLAB vectors
to .NET vectors (single dimension arrays) call the .real or .imaginary
method, as needed, on MWArrayComponent as follows:

Array nativeArray= sparseMatrix.ToVector(MWArrayComponent.Real);

Array nativeArray= sparseMatrix.ToVector(MWArrayComponent.Imaginary);

Jagged Array Processing
A jagged array is an array whose elements are arrays. The elements of a
jagged array can be of different dimensions and sizes, as opposed to the
elements of a non–jagged array whose elements are of the same dimensions
and size.

Web services, in particular, process data almost exclusively in jagged arrays.

4-24

Application Coding

MWNumericArrays can only process jagged arrays with a rectangular shape.

In the following code snippet, a rectangular jagged array of type int is
initialized and populated.

Initializing and Populating a Jagged Array

int[][] jagged = new int[5][];
for (int i = 0; i < 5; i++)

jagged[i] = new int[10];
MWNumericArray jaggedMWArray = new MWNumericArray(jagged);
Console.WriteLine(jaggedMWArray);

Field Additions to Data Structures and Data Structure
Arrays
When adding fields to data structures and data structure arrays, do so
using standard programming techniques. Do not use the set command as a
shortcut.

For examples of how to correctly add fields to data structures and data
structure arrays, see the programming examples in “C# Integration
Examples” on page 4-31 and “Microsoft® Visual Basic® Integration Examples”
on page 4-70.

MATLAB Array Indexing
.NET Builder provides indexers to support a subset of MATLAB array
indexing.

Note If each element in a large array returned by a .NET Builder component
is to be indexed, the returned MATLAB array should first be converted to
a native array using the toArray() method. This results in much better
performance.

Don’t keep the array in MATLAB type; convert it to a native array first. See
Chapter 1, “Getting Started” for an example of native type conversion.

4-25

4 Component Integration

Console Application Blocking When Creating Figures

• “WaitForFiguresToDie Method” on page 4-26

• “Using WaitForFiguresToDie to Block Execution” on page 4-27

WaitForFiguresToDie Method
The MATLAB Builder NE product adds a WaitForFiguresToDie method to
each .NET class that it creates. WaitForFiguresToDie takes no arguments.
Your application can call WaitForFiguresToDie any time during execution.

The purpose of WaitForFiguresToDie is to block execution of a calling
program as long as figures created in encapsulated MATLAB code are
displayed. Typically you use WaitForFiguresToDie when:

• There are one or more figures open that were created by a .NET component
created by the builder.

• The method that displays the graphics requires user input before
continuing.

• The method that calls the figures was called from main() in a console
program.

When WaitForFiguresToDie is called, execution of the calling program is
blocked if any figures created by the calling object remain open.

Tip Consider using the console.readline method when possible as it
accomplishes much of this functionality in a standardized manner.

Caution Use care when calling the WaitForFiguresToDie method. Calling
this method from an interactive program, such as Microsoft Excel, can hang
the application. This method should be called only from console-based
programs.

4-26

Application Coding

Using WaitForFiguresToDie to Block Execution
The following example illustrates using WaitForFiguresToDie from a .NET
application. The example uses a .NET component created by the MATLAB
Builder NE product; the object encapsulates MATLAB code that draws a
simple plot.

1 Create a work folder for your source code. In this example, the folder is
D:\work\plotdemo.

2 In this folder, create the following MATLAB file:

drawplot.m

function drawplot()
plot(1:10);

3 Use MATLAB Builder NE to create a .NET component with the following
properties:

Component name Figure

Class name Plotter

4 Create a .NET program in a file named runplot with the following code:

using Figure.Plotter;

public class Main {
public static void main(String[] args) {

try {
plotter p = new Plotter();
try {

p.showPlot();
p.WaitForFiguresToDie();

}
catch (Exception e) {
console.writeline(e);

}
}

}
}

4-27

4 Component Integration

5 Compile the application.

When you run the application, the program displays a plot from 1 to 10 in a
MATLAB figure window. The application ends when you dismiss the figure.

Note To see what happens without the call to WaitForFiguresToDie,
comment out the call, rebuild the application, and run it. In this case, the
figure is drawn and is immediately destroyed as the application exits.

Error Handling
As with managed code, any errors that occur during execution of an MATLAB
function or during data conversion are signaled by a standard .NET exception.

Like any other .NET application, an application that calls a method generated
by the MATLAB Builder NE product can handle errors by either

• Catching and handling the exception locally

• Allowing the calling method to catch it

Here are examples for each way of handling errors.

In the GetPrimes example the method itself handles the exception.

public double[] GetPrimes(int n)
{
MWArray primes= null;
MyPrimesClass myPrimesClass= null;
try
{
myPrimesClass= new MyPrimesClass();
primes= myPrimesClass.myprimes((double)n);
return (double[])(MWNumericArray)primes).

ToVector(MWArrayComponent.Real);
}

catch (Exception ex)
{
Console.WriteLine("Exception: {0}", ex);

4-28

Application Coding

return new double[0];
}

}

In the next example, the method that calls myprimes does not catch the
exception. Instead, its calling method (that is, the method that calls the
method that calls myprimes) handles the exception.

public double[] GetPrimes(int n)
{

MWArray primes= null;
MyPrimesClass myPrimesClass= null;
try

{
myPrimesClass= new MyPrimesClass();
primes= myPrimesClass.myprimes((double)n);
return (double[])(MWNumericArray)primes).
ToVector(MWArrayComponent.Real);

}

catch (Exception e)
{

throw;
}

}

Explicitly Freeing Resources With Dispose

Note As of R2009b, native memory management for mxArray is automatically
handled by .NET’s CLR memory manager. There is no longer a reason to
manually disable native memory management when working with mxArray.
Calls to disable memory management will result in a null operation.

Usually the Disposemethod is called from a finally section in a try-finally
block as you can see in the following example:

try
{

/* Allocate a huge array */

4-29

4 Component Integration

MWNumericArray array = new MWNumericArray(1000,1000);
.
. (use the array)
.

}
finally
{

/* Explicitly dispose of the managed array and its */
/* native resources */

if (null != array)
{

array.Dispose();
}

}

The statement array.Dispose() frees the memory allocated by both the
managed wrapper and the native MATLAB array.

The MWArray class provides two disposal methods: Dispose and the static
method DisposeArray. The DisposeArray method is more general in that it
disposes of either a single MWArray or an array of arrays of type MWArray.

4-30

C# Integration Examples

C# Integration Examples

In this section...

“Simple Plot Example” on page 4-31

“Passing Variable Arguments” on page 4-36

“Spectral Analysis Example” on page 4-41

“Matrix Math Example” on page 4-48

“Phonebook Example” on page 4-56

“Optimization Example” on page 4-63

Simple Plot Example

• “Purpose” on page 4-31

• “Procedure” on page 4-32

Purpose
The drawgraph function displays a plot of input parameters x and y. The
purpose of the example is to show you how to:

• Use the MATLAB Builder NE product to convert a MATLAB function
(drawgraph) to a method of a .NET class (Plotter) and wrap the class
in a .NET component (PlotComp).

• Access the component in a C# application (PlotApp.cs) by instantiating
the Plotter class and using the MWArray class library to handle data
conversion.

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Build and run the PlotCSApp application, using the Visual Studio .NET
development environment.

4-31

../MWArrayAPI/HTML/index.html

4 Component Integration

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with the MATLAB product to your
work folder:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\PlotExample

b At the MATLAB command prompt, change folder to the new
PlotExample\PlotComp subfolder in your work folder.

2 Write the drawgraph function as you would any MATLAB function.

This code is already in your work folder in
PlotExample\PlotComp\drawgraph.m.

3 While in MATLAB, issue the following command to open the Deployment
Tool window:

deploytool

4 Build the .NET component. See the instructions in “Deployable Component
Creation” on page 1-13 for more details. Use the following information:

Project Name PlotComp

Class Name Plotter

File to compile drawgraph.m

5 Write source code for a C# application that accesses the component.

The sample application for this example is in
matlabroot\toolbox\dotnetbuilder\Examples\VS8\PlotExample
\PlotCSApp\PlotApp.cs.

The program listing is shown here.

PlotApp.cs

// ***

4-32

C# Integration Examples

//

// PlotApp.cs

//

// This example demonstrates how to use MATLAB Builder NE to build a component

// that displays a MATLAB figure window.

//

// Copyright 2001-2012 The MathWorks, Inc.

//

// ***

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using PlotComp;

namespace MathWorks.Examples.PlotApp

{

/// <summary>

/// This application demonstrates plotting x-y data by graphing a simple

/// parabola into a MATLAB figure window.

/// </summary>

class PlotCSApp

{

#region MAIN

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

try

{

const int numPoints= 10; // Number of points to plot

// Allocate native array for plot values

double [,] plotValues= new double[2, numPoints];

4-33

4 Component Integration

// Plot 5x vs x^2

for (int x= 1; x <= numPoints; x++)

{

plotValues[0, x-1]= x*5;

plotValues[1, x-1]= x*x;

}

// Create a new plotter object

Plotter plotter= new Plotter();

// Plot the two sets of values - Note the ability to cast

the native array to a MATLAB numeric array

plotter.drawgraph((MWNumericArray)plotValues);

Console.ReadLine(); // Wait for user to exit application

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

}

#endregion

}

}

The program does the following:

• Creates two arrays of double values

• Creates a Plotter object.

• Calls the drawgraph method to plot the equation using the MATLAB plot
function.

4-34

C# Integration Examples

• Uses MWNumericArray to represent the data needed by the drawgraph
method to plot the equation.

• Uses a try-catch block to catch and handle any exceptions.

The statement

Plotter plotter= new Plotter();

creates an instance of the Plotter class, and the statement

plotter.drawgraph((MWNumericArray)plotValues);

explicitly casts the native plotValues to MWNumericArray and then calls
the method drawgraph.

6 Build the PlotCSApp application using Visual Studio .NET.

a The PlotCSApp folder contains a Visual Studio .NET project file for this
example. Open the project in Visual Studio .NET by double-clicking
PlotCSApp.csproj in Windows Explorer. You can also open it from the
MATLAB desktop by right-clicking PlotCSApp.csproj > Open Outside
MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll. See “Supported Microsoft .NET Framework Versions” for a
list of supported framework versions.

c Add or, if necessary, fix the location of a reference to the PlotComp component
which you built in a previous step. (The component, PlotComp.dll, is in
the \PlotExample\PlotComp\x86\V2.0\Debug\distrib subfolder of your
work area.)

7 Build and run the application in Visual Studio .NET.

4-35

4 Component Integration

Passing Variable Arguments

Note This example is similar to “Simple Plot Example” on page 4-31, except
that the MATLAB function to be encapsulated takes a variable number of
arguments instead of just one.

The purpose of the example is to show you the following:

• How to use the builder to convert a MATLAB function, drawgraph, which
takes a variable number of arguments, to a method of a .NET class
(Plotter) and wrap the class in a .NET component (VarArgComp). The
drawgraph function (which can be called as a method of the Plotter class)
displays a plot of the input parameters.

• How to access the component in a C# application (VarArgApp.cs) by
instantiating the Plotter class and using MWArray to represent data.

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• How to build and run the VarArgDemoApp application, using the Visual
Studio .NET development environment.

Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with the MATLAB product to your
work folder:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\VarArgExample

b At the MATLAB command prompt, cd to the new VarArgExample subfolder
in your work folder.

2 Write the MATLAB functions as you would any MATLAB function.

4-36

../MWArrayAPI/HTML/index.html

C# Integration Examples

The code for the functions in this example is as follows:

drawgraph.m

function [xyCoords] = DrawGraph(colorSpec, varargin)

...

numVarArgIn= length(varargin);

xyCoords= zeros(numVarArgIn, 2);

for idx = 1:numVarArgIn

xCoord = varargin{idx}(1);

yCoord = varargin{idx}(2);

x(idx) = xCoord;

y(idx) = yCoord;

xyCoords(idx,1) = xCoord;

xyCoords(idx,2) = yCoord;

end

xmin = min(0, min(x));

ymin = min(0, min(y));

axis([xmin fix(max(x))+3 ymin fix(max(y))+3])

plot(x, y, 'color', colorSpec);

extractcoords.m

function [varargout] = ExtractCoords(coords)

%EXTRACTCOORDS Extracts a variable number of two element x and y

% coordinate vectors from a two column array

% [VARARGOUT] = EXTRACTCOORDS(COORDS) Extracts x,y coordinates

$ from a two column array

% This file is used as an example for the .NET Builder

% Language product.

% Copyright 2001-2012 The MathWorks, Inc.

4-37

4 Component Integration

% $Revision: 1.1.6.45.2.2 $ $Date: 2012/01/10 21:12:50 $

for idx = 1:nargout

varargout{idx}= coords(idx,:);

end

This code is already in your work folder in /VarArgExample/VarArgComp/.

3 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

4 Build the .NET component. See the instructions in “Deployable Component
Creation” on page 1-13 for more details. Use the following information:

Project Name VarArgComp

Class Name Plotter

File to compile extractcoords.m drawgraph.m

5 Write source code for an application that accesses the component.

The sample application for this example is in
VarArgExample\VarArgCSApp\VarArgApp.cs.

The program listing is shown here.

VarArgApp.cs

// ***

//

//VarArgApp.cs

//

// This example demonstrates how to use MATLAB Builder NE to build a component

// with a variable number of input and output arguments.

//

// Copyright 2001-2012 The MathWorks, Inc.

//

// ***

4-38

C# Integration Examples

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using VarArgComp;

namespace MathWorks.Examples.VarArgApp

{

/// <summary>

/// This application demonstrates how to call components

/// having methods with varargin/vargout arguments.

/// </summary>

class VarArgApp

{

#region MAIN

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

// Initialize the input data

MWNumericArray colorSpec= new double[]

{0.9, 0.0, 0.0};

MWNumericArray data=

new MWNumericArray(new int[,]{{1,2},{2,4},

{3,6},{4,8},{5,10}});

MWArray[] coords= null;

try

{

// Create a new plotter object

Plotter plotter= new Plotter();

//Extract a variable number of two element x and y coordinate

// vectors from the data array

4-39

4 Component Integration

coords= plotter.extractcoords(5, data);

// Draw a graph using the specified color to connect the

// variable number of input coordinates.

// Return a two column data array containing the input coordinates.

data= (MWNumericArray)plotter.drawgraph(colorSpec,

coords[0], coords[1], coords[2],coords[3], coords[4]);

Console.WriteLine("result=\n{0}", data);

Console.ReadLine(); // Wait for user to exit application

// Note: You can also pass in the coordinate array directly.

data= (MWNumericArray)plotter.drawgraph(colorSpec, coords);

Console.WriteLine("result=\n{0}", data);

Console.ReadLine(); // Wait for user to exit application

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

}

#endregion

}

}

The program does the following:

• Initializes three arrays (colorSpec, data, and coords) using the MWArray
class library

• Creates a Plotter object

• Calls the extracoords and drawgraph methods

• Uses MWNumericArray to represent the data needed by the methods

• Uses a try-catch block to catch and handle any exceptions

4-40

C# Integration Examples

The following statements are alternative ways to call the drawgraph method:

data= (MWNumericArray)plotter.drawgraph(colorSpec,

coords[0], coords[1], coords[2],coords[3], coords[4]);

...

data= (MWNumericArray)plotter.drawgraph((MWArray)colorSpec, coords);

6 Build the VarArgApp application using Visual Studio .NET.

a The VarArgCSApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
VarArgCSApp.csproj in Windows Explorer. You can also open it from
the MATLAB desktop by right-clicking VarArgCSApp.csproj > Open
Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll. See “Supported Microsoft .NET Framework Versions” for a
list of supported framework versions.

c Add or, if necessary, fix the location of a reference
to the VarArgComp component which you built in a
previous step. (The component, VarArgComp.dll, is in the
\VarArgExample\VarArgComp\x86\v2.0\debug\distrib subfolder of your
work area.)

7 Build and run the application in Visual Studio .NET.

Spectral Analysis Example

• “Purpose” on page 4-41

• “Procedure” on page 4-43

Purpose
The purpose of the example is to show you the following:

• How to use the MATLAB Builder NE product to create a component
(SpectraComp) containing more than one class

4-41

4 Component Integration

• How to access the component in a C# application (SpectraApp.cs),
including use of the MWArray class hierarchy to represent data

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• How to build and run the application, using the Visual Studio .NET
development environment

The component SpectraComp analyzes a signal and graphs the result. The
class, SignalAnalyzer, performs a fast Fourier transform (FFT) on an
input data array. A method of this class, computefft, returns the results
of that FFT as two output arrays—an array of frequency points and the
power spectral density. The second class, Plotter, graphs the returned data
using the plotfft method. These two methods, computefft and plotfft,
encapsulate MATLAB functions.

The computefft method computes the FFT and power spectral density of the
input data and computes a vector of frequency points based on the length
of the data entered and the sampling interval. The plotfft method plots
the FFT data and the power spectral density in a MATLAB figure window.
The MATLAB code for these two methods resides in two MATLAB files,
computefft.m and plotfft.m, which can be found in:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\SpectraExample\SpectraComp

computefft.m

function [fftData, freq, powerSpect] =
ComputeFFT(data, interval)

%COMPUTEFFT Computes the FFT and power spectral density.
% [FFTDATA, FREQ, POWERSPECT] = COMPUTEFFT(DATA, INTERVAL)
% Computes the FFT and power spectral density of
% the input data.
% This file is used as an example for the .NET Builder
% Language product.
% Copyright 2001-2012 The MathWorks, Inc.
if (isempty(data))

4-42

../MWArrayAPI/HTML/index.html

C# Integration Examples

fftdata = [];
freq = [];
powerspect = [];
return;

end
if (interval <= 0)

error('Sampling interval must be greater then zero');
return;

end
fftData = fft(data);
freq = (0:length(fftData)-1)/(length(fftData)*interval);
powerSpect = abs(fftData)/(sqrt(length(fftData)));

plotfft.m

function PlotFFT(fftData, freq, powerSpect)
%PLOTFFT Computes and plots the FFT and power spectral density.
% [FFTDATA, FREQ, POWERSPECT] = PLOTFFT(DATA, INTERVAL)
% Computes the FFT and power spectral density
% of the input data.
% This file is used as an example for the .NET Builder
% Language product.
% Copyright 2001-2012 The MathWorks, Inc.
len = length(fftData);

if (len <= 0)
return;

end
plot(freq(1:floor(len/2)), powerSpect(1:floor(len/2)))
xlabel('Frequency (Hz)'), grid on
title('Power spectral density')

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with the MATLAB product to your
work folder:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\SpectraExample

4-43

4 Component Integration

b At the MATLAB command prompt, cd to the new SpectraExample
subfolder in your work folder.

2 Write the MATLAB code that you want to access.

This example uses computefft.m and plotfft.m, which are already in your
work folder in SpectraExample\SpectraComp.

3 While in MATLAB, issue the following command to open the Deployment
Tool window:

deploytool

4 Build the .NET component. See the instructions in “Deployable Component
Creation” on page 1-13 for more details. Use the following information:

Project Name SpectraComp

Class Names Plotter SignalAnalyzer

Files to compile computefft.m plotfft.m

5 Write source code for an application that accesses the component.

The sample application for this example is in
SpectraExample\SpectraCSApp\SpectraApp.cs.

The program listing is shown here.

SpectraApp.cs

// ***

//

//SpectraApp.cs

//

// This example demonstrates how to use MATLAB Builder NE to build a component

// with multiple classes.

//

// Copyright 2001-2012 The MathWorks, Inc.

//

4-44

C# Integration Examples

// ***

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using SpectraComp;

namespace MathWorks.Examples.SpectraApp

{

/// <summary>

/// This application computes and plots the power spectral density of an input signal.

/// </summary>

class SpectraCSApp

{

#region MAIN

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

try

{

const double interval= 0.01; // The sampling interval

const int numSamples= 1001; // The number of samples

// Construct input data as sin(2*PI*15*t) + (sin(2*PI*40*t) plus a

// random signal. Duration= 10; Sampling interval= 0.01

MWNumericArray data= new MWNumericArray(MWArrayComplexity.Real,

MWNumericType.Double, numSamples);

Random random= new Random();

// Initialize data

for (int idx= 1; idx <= numSamples; idx++)

{

double t= (idx-1)* interval;

4-45

4 Component Integration

data[idx]= Math.Sin(2.0*Math.PI*15.0*t) + Math.Sin(2.0*Math.PI*40.0*t) +

random.NextDouble();

}

// Create a new signal analyzer object

SignalAnalyzer signalAnalyzer= new SignalAnalyzer();

// Compute the fft and power spectral density for the data array

MWArray[] argsOut= signalAnalyzer.computefft(3, data, interval);

// Print the first twenty elements of each result array

int numElements= 20;

MWNumericArray resultArray= new MWNumericArray(MWArrayComplexity.Complex,

MWNumericType.Double, numElements);

for (int idx= 1; idx <= numElements; idx++)

{

resultArray[idx]= ((MWNumericArray)argsOut[0])[idx];

}

Console.WriteLine("FFT:\n{0}\n", resultArray);

for (int idx= 1; idx <= numElements; idx++)

{

resultArray[idx]= ((MWNumericArray)argsOut[1])[idx];

}

Console.WriteLine("Frequency:\n{0}\n", resultArray);

for (int idx= 1; idx <= numElements; idx++)

{

resultArray[idx]= ((MWNumericArray)argsOut[2])[idx];

}

Console.WriteLine("Power Spectral Density:\n{0}", resultArray);

// Create a new plotter object

Plotter plotter= new Plotter();

4-46

C# Integration Examples

// Plot the fft and power spectral density for the data array

plotter.plotfft(argsOut[0], argsOut[1], argsOut[2]);

Console.ReadLine(); // Wait for user to exit application

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

}

#endregion

}

}

The program does the following:

• Constructs an input array with values representing a random signal with
two sinusoids at 15 and 40 Hz embedded inside of it

• Creates an MWNumericArray array that contains the data

• Instantiates a SignalAnalyzer object

• Calls the computefft method, which computes the FFT, frequency, and
the spectral density

• Instantiates a Plotter object

• Calls the plotfft method, which plots the data

• Uses a try/catch block to handle exceptions

The following statement

MWNumericArray data= new MWNumericArray(MWArrayComplexity.Real,
MWNumericType.Double, numSamples);

shows how to use the MWArray class library to construct a MWNumericArray
that is used as method input to the computefft function.

4-47

4 Component Integration

The following statement

SignalAnalyzer signalAnalyzer = new SignalAnalyzer();

creates an instance of the class SignalAnalyzer, and the following statement

MWArray[] argsOut= signalAnalyzer.computefft(3, data, interval);

calls the method computefft.

6 Build the SpectraApp application using Visual Studio .NET.

a The SpectraCSApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
SpectraCSApp.csproj in Windows Explorer. You can also open it from
the MATLAB desktop by right-clicking SpectraCSApp.csproj > Open
Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll. See “Supported Microsoft .NET Framework Versions” for a
list of supported framework versions.

c If necessary, add (or fix the location of) a reference
to the SpectraComp component which you built in a
previous step. (The component, SpectraComp.dll, is in the
\SpectraExample\SpectraComp\x86\V2.0\Debug\distrib subfolder of
your work area.)

7 Build and run the application in Visual Studio .NET.

Matrix Math Example

• “Purpose” on page 4-49

• “Procedure” on page 4-49

• “MATLAB Functions to Be Encapsulated” on page 4-55

• “Understanding the MatrixMath Program” on page 4-56

4-48

C# Integration Examples

Purpose
The purpose of the example is to show you the following:

• How to assign more than one MATLAB function to a component class

• How to access the component in a C# application (MatrixMathApp.cs)
by instantiating Factor and using the MWArray class library to handle
data conversion

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• How to build and run the MatrixMathApp application, using the Visual
Studio .NET development environment

This example builds a .NET component to perform matrix math. The example
creates a program that performs Cholesky, LU, and QR factorizations on a
simple tridiagonal matrix (finite difference matrix) with the following form:

A = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

You supply the size of the matrix on the command line, and the program
constructs the matrix and performs the three factorizations. The original
matrix and the results are printed to standard output. You may optionally
perform the calculations using a sparse matrix by specifying the string
"sparse" as the second parameter on the command line.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with the MATLAB product to your
work folder:

4-49

../MWArrayAPI/HTML/index.html

4 Component Integration

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\MatrixMathExample

b At the MATLAB command prompt, cd to the new MatrixMathExample
subfolder in your work folder.

2 Write the MATLAB functions as you would any MATLAB function.

The code for the cholesky, ludecomp, and qrdecomp functions is already in
your work folder in MatrixMathExample\MatrixMathComp\.

3 While in MATLAB, issue the following command to open the Deployment Tool:

deploytool

4 Build the .NET component. See the instructions in “Deployable Component
Creation” on page 1-13 for more details. Use the following information:

Project Name MatrixMathComp

Class Name Factor

Files to compile cholesky ludecomp qrdecomp

5 Write source code for an application that accesses the component.

The sample application for this example is in
MatrixMathExample\MatrixMathCSApp\MatrixMathApp.cs.

The program listing is shown here.

MatrixMathApp.cs

// ***

//

// MatrixMathApp.css

// This example demonstrates how to use MATLAB Builder NE to build a component

// that returns multiple results and optionally uses sparse matrices for

// arguments.

// Copyright 2001-2012 The MathWorks, Inc.

//

// ***

4-50

C# Integration Examples

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using MatrixMathComp;

namespace MathWorks.Examples.MatrixMath

{

/// <summary>

/// This application computes cholesky, LU, and QR factorizations of a finite

/// difference matrix of order N.

/// The order is passed into the application on the command line.

/// </summary>

/// <remarks>

/// Command Line Arguments:

/// <newpara></newpara>

/// args[0] - Matrix order(N)

/// <newpara></newpara>

/// args[1] - (optional) sparse; Use a sparse matrix

/// </remarks>

class MatrixMathApp

{

#region MAIN

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

bool makeSparse= true;

int matrixOrder= 4;

MWNumericArray matrix= null; // The matrix to factor

MWArray argOut= null; // Stores single factorization result

MWArray[] argsOut= null; // Stores multiple factorization results

4-51

4 Component Integration

try

{

// If no argument specified, use defaults

if (0 != args.Length)

{

// Convert matrix order

matrixOrder= Int32.Parse(args[0]);

if (0 >= matrixOrder)

{

throw new ArgumentOutOfRangeException("matrixOrder", matrixOrder,

"Must enter a positive integer for the matrix order(N)");

}

makeSparse= ((1 < args.Length) && (args[1].Equals("sparse")));

}

// Create the test matrix. If the second argument is "sparse",

// create a sparse matrix.

matrix= (makeSparse)

? MWNumericArray.MakeSparse(matrixOrder, matrixOrder,

MWArrayComplexity.Real, (matrixOrder+(2*(matrixOrder-1))))

: new MWNumericArray(MWArrayComplexity.Real,

MWNumericType.Double, matrixOrder, matrixOrder);

// Initialize the test matrix

for (int rowIdx= 1; rowIdx <= matrixOrder; rowIdx++)

for (int colIdx= 1; colIdx <= matrixOrder; colIdx++)

if (rowIdx == colIdx)

matrix[rowIdx, colIdx]= 2.0;

else if ((colIdx == rowIdx+1) || (colIdx == rowIdx-1))

matrix[rowIdx, colIdx]= -1.0;

// Create a new factor object

Factor factor= new Factor();

// Print the test matrix

Console.WriteLine("Test Matrix:\n{0}\n", matrix);

// Compute and print the cholesky factorization using the

4-52

C# Integration Examples

// single output syntax

argOut= factor.cholesky((MWArray)matrix);

Console.WriteLine("Cholesky

Factorization:\n{0}\n", argOut);

// Compute and print the LU factorization using the multiple output syntax

argsOut= factor.ludecomp(2, matrix);

Console.WriteLine("LU Factorization:\nL

Matrix:\n{0}\nU Matrix:\n{1}\n", argsOut[0],

argsOut[1]);

MWNumericArray.DisposeArray(argsOut);

// Compute and print the QR factorization

argsOut= factor.qrdecomp(2, matrix);

Console.WriteLine("QR Factorization:\nQ Matrix:\n{0}\nR Matrix:\n{1}\n",

argsOut[0], argsOut[1]);

Console.ReadLine();

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

finally

{

// Free native resources

if (null != (object)matrix) matrix.Dispose();

if (null != (object)argOut) argOut.Dispose();

MWNumericArray.DisposeArray(argsOut);

}

}

#endregion

4-53

4 Component Integration

}

}

The statement

Factor factor= new Factor();

creates an instance of the class Factor.

The following statements call the methods that encapsulate the MATLAB
functions:

argOut= factor.cholesky((MWArray)matrix);
...
argsOut= factor.ludecomp(2, matrix);
...
argsOut= factor.qrdecomp(2, matrix);
...

Note See “Understanding the MatrixMath Program” on page 4-56 for more
details about the structure of this program.

6 Build the MatrixMathApp application using Visual Studio .NET.

a The MatrixMathCSApp folder contains a Visual Studio .NET project
file for this example. Open the project in Visual Studio .NET by
double-clicking MatrixMathCSApp.csproj in Windows Explorer.
You can also open it from the MATLAB desktop by right-clicking
MatrixMathCSApp.csproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll. See “Supported Microsoft .NET Framework Versions” for a
list of supported framework versions.

c If necessary, add (or fix the location of) a reference to the
MatrixMathComp component which you built in a previous
step. (The component, MatrixMathComp.dll, is in the
\MatrixMathExample\MatrixMathComp\x86\V2.0\Debug\distrib
subfolder of your work area.)

4-54

C# Integration Examples

7 Build and run the application in Visual Studio .NET.

MATLAB Functions to Be Encapsulated
The following code defines the MATLAB functions used in the example.

cholesky.m

function [L] = Cholesky(A)

%CHOLESKY Cholesky factorization of A.

% L= CHOLESKY(A) returns the Cholesky factorization of A.

% This file is used as an example for the .NET Builder

% Language product.

% Copyright 2001-2012 The MathWorks, Inc.

% $Revision: 1.1.6.45.2.2 $ $Date: 2012/01/10 21:12:50 $

L = chol(A);

ludecomp.m

function [L,U] = LUDecomp(A)

%LUDECOMP LU factorization of A.

% [L,U]= LUDECOMP(A) returns the LU factorization of A.

% This file is used as an example for the .NET Builder

% Language product.

% Copyright 2001-2012 The MathWorks, Inc.

% $Revision: 1.1.6.45.2.2 $ $Date: 2012/01/10 21:12:50 $

[L,U] = lu(A);

qrdecomp.m

function [Q,R] = QRDecomp(A)

%QRDECOMP QR factorization of A.

% [Q,R]= QRDECOMP(A) returns the QR factorization of A.

% This file is used as an example for the .NET Builder

% Language product.

% Copyright 2001-2012 The MathWorks, Inc.

4-55

4 Component Integration

% $Revision: 1.1.6.45.2.2 $ $Date: 2012/01/10 21:12:50 $

[Q,R] = qr(A);

Understanding the MatrixMath Program
The MatrixMath program takes one or two arguments from the command line.
The first argument is converted to the integer order of the test matrix. If the
string sparse is passed as the second argument, a sparse matrix is created
to contain the test array. The Cholesky, LU, and QR factorizations are then
computed and the results are displayed.

The main method has three parts:

• The first part sets up the input matrix, creates a new factor object, and calls
the cholesky, ludecomp, and qrdecomp methods. This part is executed
inside of a try block. This is done so that if an exception occurs during
execution, the corresponding catch block will be executed.

• The second part is the catch block. The code prints a message to standard
output to let the user know about the error that has occurred.

• The third part is a finally block to manually clean up native resources
before exiting.

Note This optional as the garbage collector will automatically clean-up
resources for you.

Phonebook Example

• “Purpose” on page 4-56

• “Procedure” on page 4-57

Purpose
The makephone function takes a structure array as an input, modifies it, and
supplies the modified array as an output.

4-56

C# Integration Examples

Note For complete reference information about the MWArray class hierarchy,
see the MWArray class library link on the product roadmap, under
“Documentation Set”.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\dotnetbuilder\Examples
\VS8\NET\PhoneBookExample

b At the MATLAB command prompt, cd to the new PhoneBookExample
subfolder in your work folder.

2 Write the makephone function as you would any MATLAB function.

The following code defines the makephone function:

function book = makephone(friends)

%MAKEPHONE Add a structure to a phonebook structure

% BOOK = MAKEPHONE(FRIENDS) adds a field to its input structure.

% The new field EXTERNAL is based on the PHONE field of the original.

% Copyright 2006-2012 The MathWorks, Inc.

book = friends;

for i = 1:numel(friends)

numberStr = num2str(book(i).phone);

book(i).external = ['(508) 555-' numberStr];

end

This code is already in your work folder in
PhoneBookExample\PhoneBookComp\makephone.m.

3 While in MATLAB, issue the following command to open the Deployment Tool:

deploytool

4-57

4 Component Integration

4 Build the .NET component. See the instructions in “Deployable Component
Creation” on page 1-13 for more details. Use the following information:

Project Name PhoneBookComp

Class Name Phonebook

File to compile makephone

5 Write source code for an application that accesses the component.

The sample application for this example is in
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\
PhoneBookExample\PhoneBookCSApp\PhoneBookApp.cs.

The program defines a structure array containing names and phone numbers,
modifies it using a MATLAB function, and displays the resulting structure
array.

The program listing is shown here.

PhoneBookApp.cs

// ***

//

// PhoneBookApp.cs

//

// This example demonstrates how to use MATLAB Builder NE to build a simple

// component that makes use of MATLAB structures as function arguments.

//

// Copyright 2001-2012 The MathWorks, Inc.

//

// ***

/* Necessary package imports */

using System;

using System.Collections.Generic;

using System.Text;

using MathWorks.MATLAB.NET.Arrays;

using PhoneBookComp;

4-58

C# Integration Examples

namespace MathWorks.Examples.PhoneBookApp

{

//

// This class demonstrates the use of the MWStructArray class

//

class PhoneBookApp

{

static void Main(string[] args)

{

PhoneBook thePhonebook = null; /* Stores deployment class instance */

MWStructArray friends= null; /* Sample input data */

MWArray[] result= null; /* Stores the result */

MWStructArray book= null; /* Ouptut data extracted from result */

/* Create the new deployment object */

thePhonebook= new PhoneBook();

/* Create an MWStructArray with two fields */

String[] myFieldNames= { "name", "phone" };

friends= new MWStructArray(2, 2, myFieldNames);

/* Populate struct with some sample data --- friends and phone */

/* number extensions */

friends["name", 1]= new MWCharArray("Jordan Robert");

friends["phone", 1]= 3386;

friends["name", 2]= new MWCharArray("Mary Smith");

friends["phone", 2]= 3912;

friends["name", 3]= new MWCharArray("Stacy Flora");

friends["phone", 3]= 3238;

friends["name", 4]= new MWCharArray("Harry Alpert");

friends["phone", 4]= 3077;

/* Show some of the sample data */

Console.WriteLine("Friends: ");

Console.WriteLine(friends.ToString());

/* Pass it to an MATLAB function that determines external phone number */

result= thePhonebook.makephone(1, friends);

book= (MWStructArray)result[0];

4-59

4 Component Integration

Console.WriteLine("Result: ");

Console.WriteLine(book.ToString());

/* Extract some data from the returned structure */

Console.WriteLine("Result record 2:");

Console.WriteLine(book["name", 2]);

Console.WriteLine(book["phone", 2]);

Console.WriteLine(book["external", 2]);

/* Print the entire result structure using the helper function below */

Console.WriteLine("");

Console.WriteLine("Entire structure:");

DispStruct(book);

Console.ReadLine();

}

public static void DispStruct(MWStructArray arr)

{

Console.WriteLine("Number of Elements: " + arr.NumberOfElements);

int[] dims= arr.Dimensions;

Console.Write("Dimensions: " + dims[0]);

for (int idx= 1; idx < dims.Length; idx++)

{

Console.WriteLine("-by-" + dims[idx]);

}

Console.WriteLine("\nNumber of Fields: " + arr.NumberOfFields);

Console.WriteLine("Standard MATLAB view:");

Console.WriteLine(arr.ToString());

Console.WriteLine("Walking structure:");

string[] fieldNames= arr.FieldNames;

4-60

C# Integration Examples

for (int element= 1; element <= arr.NumberOfElements; element++)

{

Console.WriteLine("Element " + element);

for (int field= 0; field < arr.NumberOfFields; field++)

{

MWArray fieldVal= arr[arr.FieldNames[field], element];

/* Recursively print substructures, */

/* give string display of other classes */

if (fieldVal.GetType() == typeof(MWStructArray))

{

Console.WriteLine(" " + fieldNames[field] + ":

nested structure:");

Console.WriteLine("+++ Begin of \"" + fieldNames[field] + "\"

nested structure");

DispStruct((MWStructArray)fieldVal);

Console.WriteLine("+++ End of \"" + fieldNames[field] +

"\" nested structure");

}

else

{

Console.Write(" " + fieldNames[field] + ": ");

Console.WriteLine(fieldVal.ToString());

}

}

}

}

}

}

The program does the following:

• Creates a structure array, using MWStructArray to represent the example
phonebook data.

• Instantiates the Phonebook class as thePhonebook object, as shown:
thePhonebook = new phonebook();

4-61

4 Component Integration

• Calls the makephone method to create a modified copy of the structure by
adding an additional field, as shown:
result = thePhonebook.makephone(1, friends);

6 Build thePhoneBookCSApp application using Visual Studio .NET.

a The PhoneBookCSApp folder contains a Visual Studio .NET project
file for this example. Open the project in Visual Studio .NET by
double-clicking PhoneBookCSApp.csproj in Windows Explorer.
You can also open it from the MATLAB desktop by right-clicking
PhoneBookCSApp.csproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or fix the location of) a reference to the
PhoneBookComp component which you built in a previous
step. (The component, PhoneBookComp.dll, is in the
\PhoneBookExample\PhoneBookComp\x86\V2.0\Debug\distrib
subfolder of your work area.)

7 Build and run the application in Visual Studio .NET.

The PhoneBookApp program should display the output:

Friends:
2x2 struct array with fields:

name
phone

Result:
2x2 struct array with fields:

name
phone
external

Result record 2:
Mary Smith
3912
(508) 555-3912

Entire structure:
Number of Elements: 4

4-62

C# Integration Examples

Dimensions: 2-by-2
Number of Fields: 3
Standard MATLAB view:
2x2 struct array with fields:

name
phone
external

Walking structure:
Element 1

name: Jordan Robert
phone: 3386
external: (508) 555-3386

Element 2
name: Mary Smith
phone: 3912
external: (508) 555-3912

Element 3
name: Stacy Flora
phone: 3238
external: (508) 555-3238

Element 4
name: Harry Alpert
phone: 3077
external: (508) 555-3077

Optimization Example

• “Purpose” on page 4-63

• “OptimizeComp Component” on page 4-64

• “Procedure” on page 4-64

Purpose
This example shows how to:

• Use the MATLAB Builder NE product to create a component
(OptimizeComp). This component applies MATLAB optimization routines
to objective functions implemented as .NET objects.

4-63

4 Component Integration

• Access the component in a .NET application (OptimizeApp.cs). Then
use the MWObjectArray class to create a reference to a .NET object
(BananaFunction.cs), and pass that object to the component.

Note For detailed usage information on this class, constructor, and
associated methods, see the MWObjectArray page in the NDoc (the MWArray
Class Library). You can also search for MWObjectArray in the MATLAB
Help browser Search field.

• Build and run the application.

OptimizeComp Component
The component (OptimizeComp) finds a local minimum of an objective
function and returns the minimal location and value. The component uses
the MATLAB optimization function fminsearch. This example optimizes the
Rosenbrock banana function used in the fminsearch documentation.

The class OptimizeComp.OptimizeClass performs an unconstrained
nonlinear optimization on an objective function implemented as a .NET
object. A method of this class, doOptim, accepts an initial value (NET object)
that implements the objective function, and returns the location and value
of a local minimum.

The second method, displayObj, is a debugging tool that lists
the characteristics of a .NET object. These two methods,
doOptim and displayObj, encapsulate MATLAB functions.
The MATLAB code for these two methods resides in
doOptim.m and displayObj.m. You can find this code in
matlabroot\toolbox\dotnetbuilder\Examples\OptimizeExample\OptimizeComp.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:
matlabroot\toolbox\dotnetbuilder\Examples\OptimizeExample

4-64

C# Integration Examples

b At the MATLAB command prompt, cd to the new OptimizeExample
subfolder in your work folder.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Set MCR Paths for Development
and Testing” in the MATLAB Compiler User’s Guide.

3 Write the MATLAB code that you want to access.
This example uses doOptim.m and displayObj.m,
which already reside in your work folder. The path is
matlabroot\toolbox\dotnetbuilder\Examples\OptimizeExample\OptimizeComp.

For reference, the code of doOptim.m is displayed here:

function [x,fval] = doOptim(h, x0)
mWrapper = @(x) h.evaluateFunction(x);

directEval = h.evaluateFunction(x0)
wrapperEval = mWrapper(x0)

[x,fval] = fminsearch(mWrapper,x0)

For reference, the code of displayObj.m is displayed here:

function className = displayObj(h)

h
className = class(h)
whos('h')
methods(h)

4 While in MATLAB, enter the following command to open the Deployment
Tool window:

deploytool

5 You create a .NET application by using the Deployment Tool GUI to build a
.NET class that wraps around your MATLAB code.

4-65

4 Component Integration

As you compile the .NET application using the Deployment Tool, use the
following information as you work through this example in “Deployable
Component Creation” on page 1-13 in Chapter 1, “Getting Started”:

Project Name OptimizeComp

Class Name OptimizeComp.OptimizeClass

File to compile doOptim.m
displayObj.m

6 Write source code for a class (BananaFunction) that implements an object
function to optimize. The sample application for this example is in
matlabroot\toolbox\dotnetbuilder\Examples\OptimizeExample\OptimizeCSApp.
The program listing for BananaFunction.cs displays the following code:

// ***//

//BananaFunction.cs

//

// This file is used as an example for the MATLAB Builder NE product.

//

// It implements the Rosenbrock banana function described in the FMINSEARCH

// documentation

//

// Copyright 2001-2010 The MathWorks, Inc.

//

// **//

using System;

namespace MathWorks.Examples.Optimize

{

public class BananaFunction

{

public BananaFunction() {}

public double evaluateFunction(double[] x)

{

double term1= 100*Math.Pow((x[1]-Math.Pow(x[0],2.0)),2.0);

double term2= Math.Pow((1-x[0]),2.0);

return term1+term2;

}

4-66

C# Integration Examples

}

}

The class implements the Rosenbrock banana function described in the
fminsearch documentation.

7 If you are running Microsoft Visual Studio 2005, perform the following
actions. Otherwise, go to the next step.

a Click Project > project_name Properties.

b Select the Debug tab.

c In Start Options, enter -1.2 1.0 in the Command line arguments
field.

8 Customize the application using Visual Studio .NET using the OptimizeCSApp
folder, which contains a Visual Studio .NET project file for this example.

a . Open the project in Visual Studio .NET by double-clicking
OptimizeCSApp.csproj in Windows Explorer. You can also open it from
the MATLAB desktop by right-clicking OptimizeCSApp.csproj > Open
Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or fix the location of) a reference to the
OptimizeComp component which you built in a previous
step. (The component, OptimizeComp.dll, is in the
\OptimizeExample\OptimizeComp\x86\V2.0\Debug\distrib
subfolder of your work area.)

When run successfully, the program displays the following output:

Using initial points= -1.2000 1

** Properties of .NET Object **

4-67

4 Component Integration

h =

MathWorks.Examples.Optimize.BananaFunction handle
with no properties.

Package: MathWorks.Examples.Optimize

className =

MathWorks.Examples.Optimize.BananaFunction

Name Size Bytes Class Attributes

h 1x1 60 MathWorks.Examples.Optimize.BananaFunction

Methods for class MathWorks.Examples.Optimize.BananaFunction:

BananaFunction addlistener findprop lt
Equals delete ge ne
GetHashCode eq gt notify
GetType evaluateFunction isvalid
ToString findobj le

**************** Finished displayObj ****************

** Performing unconstrained nonlinear optimization **

directEval =

24.2000

4-68

C# Integration Examples

wrapperEval =

24.2000

x =

1.0000 1.0000

fval =

8.1777e-010

***************** Finished doOptim ******************

Location of minimum: 1.0000 1.0000
Function value at minimum: 8.1777e-010

4-69

4 Component Integration

Microsoft Visual Basic Integration Examples

In this section...

“Magic Square Example (Visual Basic)” on page 4-70

“Create Plot Example (Visual Basic)” on page 4-74

“Variable Arguments Example (Visual Basic)” on page 4-78

“Spectral Analysis Example (Visual Basic)” on page 4-81

“Matrix Math Example (Visual Basic)” on page 4-86

“Phonebook Example (Visual Basic)” on page 4-90

“Optimization Example (Visual Basic)” on page 4-97

Note The examples for the MATLAB Builder NE product are in
matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber, where
matlabroot is the folder where the MATLAB product is installed and
VSversionnumber specifies the version of Microsoft Visual Studio .NET you
are using (currently VS8). If you have Microsoft Visual Studio .NET installed,
you can load projects for all the examples by opening the following solution:

matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\DotNetExamples.sln

Note The sample applications that follow use the same components as those
developed in “The Magic Square Example” on page 1-9 and “C# Integration
Examples” on page 4-31. Instead of C#, the following applications are
written in Microsoft Visual Basic .NET. For details about creating the
components, see the procedures noted in the beginning of the description for
each application. Then follow the steps shown here to use the component in
a Visual Basic application.

Magic Square Example (Visual Basic)
To create the component for this example, see the first several steps in “The
Magic Square Example” on page 1-9. After you build the MagicSquareComp

4-70

Microsoft® Visual Basic® Integration Examples

component, you can build an application that accesses the component as
follows.

1 For this example, the application is MagicSquareApp.vb.

You can find MagicSquareApp.vb in:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET

\MagicSquareExample\MagicSquareVBApp

The program listing is as follows.

MagicSquareApp.vb

' ***

'

' MagicSquareApp.vb

'

' This example demonstrates how to use MATLAB Builder NE to build a simple

' component returning a magic square and how to convert MWNumericArray types

' to native .NET types.

'

' Copyright 2001-2012 The MathWorks, Inc.

'

' ***

Imports System

Imports System.Reflection

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports MagicSquareComp

Namespace MathWorks.Examples.MagicSquare

' <summary>

' The MagicSquareApp class computes a magic square of the user specified size.

' </summary>

' <remarks>

' args[0] - a positive integer representing the array size.

4-71

4 Component Integration

' </remarks>

Class MagicSquareApp

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Dim arraySize As MWNumericArray = Nothing

Dim magicSquare As MWNumericArray = Nothing

Try

' Get user specified command line arguments or set default

If (0 <> args.Length) Then

arraySize = New MWNumericArray(Int32.Parse(args(0)), False)

Else

arraySize = New MWNumericArray(4, False)

End If

' Create the magic square object

Dim magic As MagicSquareClass = New MagicSquareClass

' Compute the magic square and print the result

magicSquare = magic.makesquare(arraySize)

Console.WriteLine("Magic square of order {0}{1}{2}{3}", arraySize,

Chr(10), Chr(10), magicSquare)

' Convert the magic square array to a two dimensional native double array

Dim nativeArray(,) As Double =

CType(magicSquare.ToArray(MWArrayComponent.Real), Double(,))

Console.WriteLine("{0}Magic square as native array:{1}", Chr(10), Chr(10))

' Display the array elements:

Dim index As Integer = arraySize.ToScalarInteger()

For i As Integer = 0 To index - 1

4-72

Microsoft® Visual Basic® Integration Examples

For j As Integer = 0 To index - 1

Console.WriteLine("Element({0},{1})= {2}", i, j, nativeArray(i, j))

Next j

Next i

Console.ReadLine() 'Wait for user to exit application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

End Try

End Sub

#End Region

End Class

End Namespace

The application you build from this source file does the following:

• Lets you pass a dimension for the magic square from the command line.

• Converts the dimension argument to a MATLAB integer scalar value.

• Declares variables of type MWNumericArray to handle data required by the
encapsulated makesquare function.

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Creates an instance of the MagicSquare class named magic.

• Calls the makesquare method, which belongs to the magic object. The
makesquare method generates the magic square using the MATLAB magic
function.

• Displays the array elements on the command line.

4-73

../MWArrayAPI/HTML/index.html

4 Component Integration

2 Build the application using Visual Studio .NET.

a The MagicSquareVBApp folder contains a Visual Studio .NET project file for
each example. Open the project in Visual Studio .NET for this example by
double-clicking MagicSquareVBApp.vbproj in Windows Explorer.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add a reference to the MagicSquareComp component, which
is in the distrib subfolder.

d Build and run the application in Visual Studio.NET.

Create Plot Example (Visual Basic)
To create the component for this example, see “Simple Plot Example” on page
4-31. Then create a Visual Basic application as follows:

1 Review the sample application for this example in
matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\NET
\PlotExample\PlotVBApp\PlotApp.vb.

The program listing is shown here.

PlotApp.vb

' ***

'

' PlotApp.vb

'

' This example demonstrates how to use MATLAB Builder NE to build a component

' that displays a MATLAB figure window.

'

' Copyright 2001-2012 The MathWorks, Inc.

'

' ***

Imports System

Imports MathWorks.MATLAB.NET.Utility

4-74

Microsoft® Visual Basic® Integration Examples

Imports MathWorks.MATLAB.NET.Arrays

Imports PlotComp

Namespace MathWorks.Examples.PlotApp

' <summary>

' This application demonstrates plotting x-y data by graphing a simple

' parabola into a MATLAB figure window.

' </summary>

Class PlotDemoApp

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Try

Const numPoints As Integer = 10 ' Number of points to plot

Dim idx As Integer

Dim plotValues(,) As Double = New Double(1, numPoints - 1) {}

Dim coords As MWNumericArray

'Plot 5x vs x^2

For idx = 0 To numPoints - 1

Dim x As Double = idx + 1

plotValues(0, idx) = x * 5

plotValues(1, idx) = x * x

Next idx

coords = New MWNumericArray(plotValues)

' Create a new plotter object

Dim plotter As Plotter = New Plotter

' Plot the values

plotter.drawgraph(coords)

4-75

4 Component Integration

Console.ReadLine() ' Wait for user to exit application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

End Try

End Sub

#End Region

End Class

End Namespace

4-76

Microsoft® Visual Basic® Integration Examples

The program does the following:

• Creates two arrays of double values

• Creates a Plotter object

• Calls the drawgraph method to plot the equation using the MATLAB plot
function

• Uses MWNumericArray to handle the data needed by the drawgraph method
to plot the equation

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Uses a try-catch block to catch and handle any exceptions

The statement

Dim plotter As Plotter = New Plotter

creates an instance of the Plotter class, and the statement

plotter.drawgraph(coords)

calls the method drawgraph.

2 Build the PlotApp application using Visual Studio .NET.

a The PlotVBApp folder contains a Visual Studio .NET project file for this
example. Open the project in Visual Studio .NET by double-clicking
PlotVBApp.vbproj in Windows Explorer. You can also open it from the
MATLAB desktop by right-clicking PlotVBApp.vbproj > Open Outside
MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or fix the location of) a reference
to the PlotComp component which you built in a

4-77

../MWArrayAPI/HTML/index.html

4 Component Integration

previous step. (The component, PlotComp.dll, is in the
\PlotExample\PlotComp\x86\V2.0\Debug\distrib subfolder of your
work area.)

3 Build and run the application in Visual Studio .NET.

Variable Arguments Example (Visual Basic)
To create the component for this example, see “Passing Variable Arguments”
on page 4-36. Then create a Microsoft Visual Basic application as follows:

1 Review the sample application for this example in
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\VarArgExample
\VarArgVBApp\VarArgApp.vb.

The program listing is shown here.

VarArgApp.vb

' ***

'

' VarArgApp.vb

'

' This example demonstrates how to use MATLAB Builder NE to build a component

' with a variable number of input and output arguments.

'

' Copyright 2001-2012 The MathWorks, Inc.

'

' ***

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports VarArgComp

Namespace MathWorks.Demo.VarArgDemoApp

4-78

Microsoft® Visual Basic® Integration Examples

' <summary>

' This application demonstrates how to call components having methods with

' varargin/vargout arguments.

' </summary>

Class VarArgDemoApp

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

' Initialize the input data

Dim colorSpec As MWNumericArray =

New MWNumericArray(New Double() {0.9, 0.0, 0.0})

Dim data As MWNumericArray =

New MWNumericArray(New Integer(,) {{1, 2}, {2, 4}, {3, 6}, {4, 8}, {5, 10}})

Dim coords() As MWArray = Nothing

Try

' Create a new plotter object

Dim plotter As Plotter = New Plotter

'Extract a variable number of two element x and y coordinate

' vectors from the data array

coords = plotter.extractcoords(5, data)

' Draw a graph using the specified color to connect the variable number of

' input coordinates.

' Return a two column data array containing the input coordinates.

data = CType(plotter.drawgraph(colorSpec, coords(0), coords(1), coords(2),

coords(3), coords(4)), _

MWNumericArray)

Console.WriteLine("result={0}{1}", Chr(10), data)

Console.ReadLine() ' Wait for user to exit application

4-79

4 Component Integration

' Note: You can also pass in the coordinate array directly.

data = CType(plotter.drawgraph(colorSpec, coords), MWNumericArray)

Console.WriteLine("result=\{0}{1}", Chr(10), data)

Console.ReadLine() ' Wait for user to exit application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

End Try

End Sub

#End Region

End Class

End Namespace

The program does the following:

• Initializes three arrays (colorSpec, data, and coords) using the MWArray
class library

• Creates a Plotter object

• Calls the extracoords and drawgraph methods

• Uses MWNumericArray to handle the data needed by the methods

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Uses a try-catch-finally block to catch and handle any exceptions

The following statements are alternative ways to call the drawgraph method:

data = CType(plotter.drawgraph(colorSpec, coords(0), coords(1), coords(2),

coords(3), coords(4)), MWNumericArray)

4-80

../MWArrayAPI/HTML/index.html

Microsoft® Visual Basic® Integration Examples

...

data = CType(plotter.drawgraph(colorSpec, coords), MWNumericArray)

2 Build the VarArgApp application using Visual Studio .NET.

a The VarArgVBApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
VarArgVBApp.vbproj in Windows Explorer. You can also open it from
the MATLAB desktop by right-clicking VarArgVBApp.vbproj > Open
Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or update the location of) a reference
to the VarArgComp component which you built in a
previous step. (The component, VarArgComp.dll, is in the
\VarArgExample\VarArgComp\x86\V2.0\Debug\distrib subfolder of your
work area.)

3 Build and run the application in Visual Studio .NET.

Spectral Analysis Example (Visual Basic)
To create the component for this example, see the first few steps of the
“Spectral Analysis Example” on page 4-41. Then create a Microsoft Visual
Basic application as follows:

1 Review the sample application for this example in
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\SpectraVBApp
\SpectraApp.vb.

The program listing is shown here.

SpectraApp.vb

' ***

'

'SpectraApp.vb

'

' This example demonstrates how to use MATLAB Builder NE to build a component

4-81

4 Component Integration

' with multiple classes.

'

' Copyright 2001-2012 The MathWorks, Inc.

'

' ***

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports SpectraComp

Namespace MathWorks.Examples.SpectraApp

' <summary>

' This application computes and plots the power spectral density of an input signal.

' </summary>

Class SpectraDemoApp

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Try

Const interval As Double = 0.01 ' The sampling interval

Const numSamples As Integer = 1001 ' The number of samples

' Construct input data as sin(2*PI*15*t) + (sin(2*PI*40*t) plus a

' random signal. Duration= 10; Sampling interval= 0.01

Dim data As MWNumericArray = New MWNumericArray(MWArrayComplexity.Real,

MWNumericType.Double, numSamples)

Dim random As Random = New Random

' Initialize data

Dim t As Double

4-82

Microsoft® Visual Basic® Integration Examples

Dim idx As Integer

For idx = 1 To numSamples

t = (idx - 1) * interval

data(idx) = New MWNumericArray(Math.Sin(2.0 * Math.PI * 15.0 * t) +

Math.Sin(2.0 * Math.PI * 40.0 * t) +

random.NextDouble())

Next idx

' Create a new signal analyzer object

Dim signalAnalyzer As SignalAnalyzer = New SignalAnalyzer

' Compute the fft and power spectral density for the data array

Dim argsOut() As MWArray = signalAnalyzer.computefft(3, data,

MWArray.op_Implicit(interval))

' Print the first twenty elements of each result array

Dim numElements As Integer = 20

Dim resultArray As MWNumericArray =

New MWNumericArray(MWArrayComplexity.Complex,

MWNumericType.Double, numElements)

For idx = 1 To numElements

resultArray(idx) = (CType(argsOut(0), MWNumericArray))(idx)

Next idx

Console.WriteLine("FFT:{0}{1}{2}", Chr(10), resultArray, Chr(10))

For idx = 1 To numElements

resultArray(idx) = (CType(argsOut(1), MWNumericArray))(idx)

Next idx

Console.WriteLine("Frequency:{0}{1}{2}", Chr(10), resultArray, Chr(10))

For idx = 1 To numElements

resultArray(idx) = (CType(argsOut(2), MWNumericArray))(idx)

Next idx

Console.WriteLine("Power Spectral Density:{0}{1}{2}",

Chr(10), resultArray, Chr(10))

4-83

4 Component Integration

' Create a new plotter object

Dim plotter As Plotter = New Plotter

' Plot the fft and power spectral density for the data array

plotter.plotfft(argsOut(0), argsOut(1), argsOut(2))

Console.ReadLine() ' Wait for user to exit application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

End Try

End Sub

#End Region

End Class

End Namespace

The program does the following:

• Constructs an input array with values representing a random signal with
two sinusoids at 15 and 40 Hz embedded inside of it

• Uses MWNumericArray to handle data conversion

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Instantiates a SignalAnalyzer object

• Calls the computefft method, which computes the FFT, frequency, and
the spectral density

• Instantiates a Plotter object

• Calls the plotfft method, which plots the data

• Uses a try/catch block to handle exceptions

4-84

../MWArrayAPI/HTML/index.html

Microsoft® Visual Basic® Integration Examples

The following statements

Dim data As MWNumericArray = New MWNumericArray_
(MWArrayComplexity.Real, MWNumericType.Double, numSamples)

...
Dim resultArray As MWNumericArray = New MWNumericArray_

(MWArrayComplexity.Complex,
MWNumericType.Double, numElements)

show how to use the MWArray class library to construct the necessary data
types.

The following statement

Dim signalAnalyzer As SignalAnalyzer = New SignalAnalyzer

creates an instance of the class SignalAnalyzer, and the following statement

Dim argsOut() As MWArray =
signalAnalyzer.computefft(3, data,

MWArray.op_Implicit(interval))

calls the method computefft and request three outputs.

2 Build the SpectraApp application using Visual Studio .NET.

a The SpectraVBApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
SpectraVBApp.vbproj in Windows Explorer. You can also open it from
the MATLAB desktop by right-clicking SpectraVBApp.vbproj > Open
Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or update the location of) a reference
to the SpectraComp component which you built in a
previous step. (The component, SpectraComp.dll, is in the
\SpectraExample\SpectraComp\x86\V2.0\Debug\distrib subfolder of
your work area.)

3 Build and run the application in Visual Studio .NET.

4-85

4 Component Integration

Matrix Math Example (Visual Basic)
To create the component for this example, see the first few steps in “Matrix
Math Example” on page 4-48. Then create a Microsoft Visual Basic
application as follows.

1 Review the sample application for this example in:

matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\

MatrixMathExample\MatrixMathVBApp\MatrixMathApp.vb.

The program listing is shown here.

MatrixMathApp.vb

' ***

'

' MatrixMathApp.vb

'

' This example demonstrates how to use MATLAB Builder NE to build a component

' that returns multiple results and optionally uses sparse matrices for

' arguments.

' Copyright 2001-2012 The MathWorks, Inc.

'

' ***

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports MatrixMathComp

Namespace MathWorks.Demo.MatrixMathApp

' <summary>

' This application computes cholesky, LU, and QR factorizations of a

' finite difference matrix of order N.

' The order is passed into the application on the command line.

' </summary>

4-86

Microsoft® Visual Basic® Integration Examples

' <remarks>

' Command Line Arguments:

' <newpara></newpara>

' args[0] - Matrix order(N)

' <newpara></newpara>

' args[1] - (optional) sparse; Use a sparse matrix

' </remarks>

Class MatrixMathDemoApp

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Dim makeSparse As Boolean = True

Dim matrixOrder As Integer = 4

Dim matrix As MWNumericArray = Nothing ' The matrix to factor

Dim argOut As MWArray = Nothing ' Stores single factorization result

Dim argsOut() As MWArray = Nothing ' Stores multiple factorization results

Try

' If no argument specified, use defaults

If (0 <> args.Length) Then

'Convert matrix order

matrixOrder = Int32.Parse(args(0))

If (0 > matrixOrder) Then

Throw New ArgumentOutOfRangeException("matrixOrder", matrixOrder, _

"Must enter a positive integer for the matrix order(N)")

End If

makeSparse = ((1 < args.Length) AndAlso (args(1).Equals("sparse")))

End If

' Create the test matrix. If the second argument

' is "sparse", create a sparse matrix.

4-87

4 Component Integration

matrix = IIf(makeSparse, _

MWNumericArray.MakeSparse(matrixOrder, matrixOrder,

MWArrayComplexity.Real,

(matrixOrder + (2 * (matrixOrder - 1)))), _

New MWNumericArray(MWArrayComplexity.Real, MWNumericType.Double,

matrixOrder, matrixOrder))

' Initialize the test matrix

For rowIdx As Integer = 1 To matrixOrder

For colIdx As Integer = 1 To matrixOrder

If rowIdx = colIdx Then

matrix(rowIdx, colIdx) = New MWNumericArray(2.0)

ElseIf colIdx = rowIdx + 1 Or colIdx = rowIdx - 1 Then

matrix(rowIdx, colIdx) = New MWNumericArray(-1.0)

End If

Next colIdx

Next rowIdx

' Create a new factor object

Dim factor As Factor = New Factor

' Print the test matrix

Console.WriteLine("Test Matrix:{0}{1}{2}", Chr(10), matrix, Chr(10))

' Compute and print the cholesky factorization using

' the single output syntax

argOut = factor.cholesky(matrix)

Console.WriteLine("Cholesky Factorization:{0}{1}{2}",

Chr(10), argOut, Chr(10))

' Compute and print the LU factorization using the multiple output syntax

argsOut = factor.ludecomp(2, matrix)

Console.WriteLine("LU Factorization:

{0}L Matrix:{1}{2}{3}U Matrix:{4}{5}{6}", Chr(10), Chr(10),

argsOut(0), Chr(10), Chr(10), argsOut(1), Chr(10))

MWNumericArray.DisposeArray(argsOut)

4-88

Microsoft® Visual Basic® Integration Examples

' Compute and print the QR factorization

argsOut = factor.qrdecomp(2, matrix)

Console.WriteLine("QR Factorization:

{0}Q Matrix:{1}{2}{3}R Matrix:{4}{5}{6}", Chr(10), Chr(10),

argsOut(0), Chr(10), Chr(10), argsOut(1), Chr(10))

Console.ReadLine()

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

Finally

' Free native resources

If Not (matrix Is Nothing) Then

matrix.Dispose()

End If

If Not (argOut Is Nothing) Then

argOut.Dispose()

End If

MWNumericArray.DisposeArray(argsOut)

End Try

End Sub

#End Region

End Class

End Namespace

The statement

Dim factor As Factor = New Factor

creates an instance of the class Factor.

The following statements call the methods that encapsulate the MATLAB
functions:

argOut = factor.cholesky(matrix)

4-89

4 Component Integration

argsOut = factor.ludecomp(2, matrix)

...
argsOut = factor.qrdecomp(2, matrix)

Note See “Understanding the MatrixMath Program” on page 4-56 for more
details about the structure of this program.

2 Build the MatrixMathApp application using Visual Studio .NET.

a The MatrixMathVBApp folder contains a Visual Studio .NET project
file for this example. Open the project in Visual Studio .NET by
double-clicking MatrixMathVBApp.vbproj in Windows Explorer.
You can also open it from the MATLAB desktop by right-clicking
MatrixMathVBApp.vbproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or update the location of) a reference
to the MatrixMathComp component which you built in a
previous step. (The component, MatrixMathComp.dll, is in the
\MatrixMathExample\MatrixMathComp\x86\V2.0\Debug\distrib
subfolder of your work area.)

3 Build and run the application in Visual Studio .NET.

Phonebook Example (Visual Basic)

• “makephone Function” on page 4-90

• “Procedure” on page 4-91

makephone Function
The makephone function takes a structure array as an input, modifies it, and
supplies the modified array as an output.

4-90

Microsoft® Visual Basic® Integration Examples

Note For complete reference information about the MWArray class hierarchy,
see the MWArray class library link on the product roadmap, under
“Documentation Set”.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\dotnetbuilder\Examples
\VS8\NET\PhoneBookExample

b At the MATLAB command prompt, cd to the new PhoneBookExample
subfolder in your work folder.

2 Write the makephone function as you would any MATLAB function.

The following code defines the makephone function:

function book = makephone(friends)

%MAKEPHONE Add a structure to a phonebook structure

% BOOK = MAKEPHONE(FRIENDS) adds a field to its input structure.

% The new field EXTERNAL is based on the PHONE field of the original.

% This file is used as an example for MATLAB

% Builder for Java.

% Copyright 2006-2012 The MathWorks, Inc.

book = friends;

for i = 1:numel(friends)

numberStr = num2str(book(i).phone);

book(i).external = ['(508) 555-' numberStr];

end

This code is already in your work folder in
PhoneBookExample\PhoneBookComp\makephone.m.

4-91

4 Component Integration

3 While in MATLAB, issue the following command to open the Deployment
Tool window:

deploytool

4 Build the .NET component. See the instructions in “Deployable Component
Creation” on page 1-13 for more details. Use the following information:

Project Name PhoneBookComp

Class Name phonebook

File to compile makephone.m

5 Write source code for an application that accesses the component.

The sample application for this example is in
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET
PhoneBookExample\PhoneBookVBApp\PhoneBookApp.vb.

The program defines a structure array containing names and phone numbers,
modifies it using a MATLAB function, and displays the resulting structure
array.

The program listing is shown here.

PhoneBookApp.vb

' ***

'

' PhoneBookApp.vb

'

' This example demonstrates how to use MATLAB Builder NE to build a simple

' component that makes use of MATLAB structures as function arguments.

'

' Copyright 2001-2012 The MathWorks, Inc.

'

' ***

' Necessary package imports

4-92

Microsoft® Visual Basic® Integration Examples

Imports MathWorks.MATLAB.NET.Arrays

Imports PhoneBookComp

'

' getphone class demonstrates the use of the MWStructArray class

'

Public Module PhoneBookVBApp

Public Sub Main()

Dim thePhonebook As phonebook 'Stores deployment class instance

Dim friends As MWStructArray 'Sample input data

Dim result As Object() 'Stores the result

Dim book As MWStructArray 'Ouptut data extracted from result

' Create the new deployment object

thePhonebook = New phonebook()

' Create an MWStructArray with two fields

Dim myFieldNames As String() = {"name", "phone"}

friends = New MWStructArray(2, 2, myFieldNames)

' Populate struct with some sample data --- friends and phone numbers

friends("name", 1) = New MWCharArray("Jordan Robert")

friends("phone", 1) = 3386

friends("name", 2) = New MWCharArray("Mary Smith")

friends("phone", 2) = 3912

friends("name", 3) = New MWCharArray("Stacy Flora")

friends("phone", 3) = 3238

friends("name", 4) = New MWCharArray("Harry Alpert")

friends("phone", 4) = 3077

' Show some of the sample data

Console.WriteLine("Friends: ")

Console.WriteLine(friends.ToString())

' Pass it to an MATLAB function that determines external phone number

result = thePhonebook.makephone(1, friends)

book = CType(result(0), MWStructArray)

Console.WriteLine("Result: ")

Console.WriteLine(book.ToString())

4-93

4 Component Integration

' Extract some data from the returned structure '

Console.WriteLine("Result record 2:")

Console.WriteLine(book("name", 2))

Console.WriteLine(book("phone", 2))

Console.WriteLine(book("external", 2))

' Print the entire result structure using the helper function below

Console.WriteLine("")

Console.WriteLine("Entire structure:")

dispStruct(book)

End Sub

Sub dispStruct(ByVal arr As MWStructArray)

Console.WriteLine("Number of Elements: " + arr.NumberOfElements.ToString())

'int numDims = arr.NumberofDimensions

Dim dims As Integer() = arr.Dimensions

Console.Write("Dimensions: " + dims(0).ToString())

Dim i As Integer

For i = 1 To dims.Length

Console.WriteLine("-by-" + dims(i - 1).ToString())

Next i

Console.WriteLine("")

Console.WriteLine("Number of Fields: " + arr.NumberOfFields.ToString())

Console.WriteLine("Standard MATLAB view:")

Console.WriteLine(arr.ToString())

Console.WriteLine("Walking structure:")

Dim fieldNames As String() = arr.FieldNames

Dim element As Integer

For element = 1 To arr.NumberOfElements

Console.WriteLine("Element " + element.ToString())

Dim field As Integer

For field = 0 To arr.NumberOfFields - 1

Dim fieldVal As MWArray = arr(arr.FieldNames(field), element)

' Recursively print substructures, give string display of other classes

If (TypeOf fieldVal Is MWStructArray) Then

4-94

Microsoft® Visual Basic® Integration Examples

Console.WriteLine(" " + fieldNames(field) + ": nested structure:")

Console.WriteLine("+++ Begin of \"" + fieldNames[field] +

" \ " nested structure")

dispStruct(CType(fieldVal, MWStructArray))

Console.WriteLine("+++ End of \"" + fieldNames[field] +

" \ " nested structure")

Else

Console.Write(" " + fieldNames(field) + ": ")

Console.WriteLine(fieldVal.ToString())

End If

Next field

Next element

End Sub

End Module

The program does the following:

• Creates a structure array, using MWStructArray to represent the example
phonebook data.

• Instantiates the plotter class as thePhonebook object, as shown:
thePhonebook = new phonebook();

• Calls the makephone method to create a modified copy of the structure by
adding an additional field, as shown:
result = thePhonebook.makephone(1, friends);

6 Build thePhoneBookVBApp application using Visual Studio .NET.

a The PhoneBookVBApp folder contains a Visual Studio .NET project
file for this example. Open the project in Visual Studio .NET by
double-clicking PhoneBookVBApp.vbproj in Windows Explorer.
You can also open it from the MATLAB desktop by right-clicking
PhoneBookVBApp.vbproj > Open Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or fix the location of) a reference to the
PhoneBookVBComp component which you built in a previous
step. (The component, PhoneBookComp.dll, is in the

4-95

4 Component Integration

\PhoneBookExample\PhoneBookVBApp\x86\V2.0\Debug\distrib
subfolder of your work area.)

7 Build and run the application in Visual Studio .NET.

The getphone program should display the output:

Friends:
2x2 struct array with fields:

name
phone

Result:
2x2 struct array with fields:

name
phone
external

Result record 2:
Mary Smith
3912
(508) 555-3912

Entire structure:
Number of Elements: 4
Dimensions: 2-by-2
Number of Fields: 3
Standard MATLAB view:
2x2 struct array with fields:

name
phone
external

Walking structure:
Element 1

name: Jordan Robert
phone: 3386
external: (508) 555-3386

Element 2
name: Mary Smith
phone: 3912
external: (508) 555-3912

Element 3

4-96

Microsoft® Visual Basic® Integration Examples

name: Stacy Flora
phone: 3238
external: (508) 555-3238

Element 4
name: Harry Alpert
phone: 3077
external: (508) 555-3077

Optimization Example (Visual Basic)

Optimization Example

• “Purpose” on page 4-97

• “OptimizeComp Component” on page 4-98

• “Procedure” on page 4-98

Purpose. This example shows how to:

• Use the MATLAB Builder NE product to create a component
(OptimizeComp). This component applies MATLAB optimization routines
to objective functions implemented as .NET objects.

• Access the component in a .NET application (OptimizeApp.vb). Then,
use the MWObjectArray class to create a reference to a .NET object
(BananaFunction.vb), and pass that object to the component.

Note For detailed usage information on this class, constructor, and
associated methods, see the MWObjectArray page in the NDoc (the MWArray
Class Library). You can also search for MWObjectArray in the MATLAB
Help browser Search field.

• Build and run the application.

4-97

4 Component Integration

OptimizeComp Component. The component (OptimizeComp) finds a local
minimum of an objective function and returns the minimal location and value.
The component uses the MATLAB optimization function fminsearch. This
example optimizes the Rosenbrock banana function used in the fminsearch
documentation.

The class OptimizeComp.OptimizeClass performs an unconstrained
nonlinear optimization on an objective function implemented as a .NET
object. A method of this class, doOptim, accepts an initial value (NET object)
that implements the objective function, and returns the location and value
of a local minimum.

The second method, displayObj, is a debugging tool that lists
the characteristics of a .NET object. These two methods,
doOptim and displayObj, encapsulate MATLAB functions.
The MATLAB code for these two methods resides in
doOptim.m and displayObj.m. You can find this code in
matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET\OptimizeExample\OptimizeV

Procedure.

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:
matlabroot\toolbox\dotnetbuilder\Examples\OptimizeExample

b At the MATLAB command prompt, cd to the new OptimizeExample
subfolder in your work folder.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Set MCR Paths for Development
and Testing”.

3 Write the MATLAB code that you want to access.
This example uses doOptim.m and displayObj.m,
which already resides in your work folder. The path is
matlabroot\toolbox\dotnetbuilder\Examples\OptimizeExample\OptimizeComp.

For reference, the code of doOptim.m is displayed here:

function [x,fval] = doOptim(h, x0)

4-98

Microsoft® Visual Basic® Integration Examples

mWrapper = @(x) h.evaluateFunction(x);

directEval = h.evaluateFunction(x0)
wrapperEval = mWrapper(x0)

[x,fval] = fminsearch(mWrapper,x0)

For reference, the code of displayObj.m is displayed here:

function className = displayObj(h)

h
className = class(h)
whos('h')
methods(h)

4 While in MATLAB, enter the following command to open the Deployment
Tool window:

deploytool

5 You create a .NET application by using the Deployment Tool GUI to build a
.NET class that wraps around your MATLAB code.

As you compile the .NET application using the Deployment Tool, use the
following information as you work through this example in “Deployable
Component Creation” on page 1-13 in Chapter 1, “Getting Started”:

Project Name OptimizeComp

Class Name OptimizeComp.OptimizeClass

File to compile doOptim.m
displayObj.m

6 Write source code for a class (BananaFunction) that implements an object
function to optimize. The sample application for this example is in
matlabroot\toolbox\dotnetbuilder\Examples\OptimizeExample\OptimizeVBApp.
The program listing for BananaFunction.vb displays the following code:

' ***

'

4-99

4 Component Integration

' BananaFunction.vb

'

' This file is used as an example for the MATLAB Builder NE product.

'

' It implements the Rosenbrock banana function described in the FMINSEARCH

' documentation

'

' Copyright 2001-2009 The MathWorks, Inc.

'

' **

Imports System

Namespace MathWorks.Examples.Optimize

Class BananaFunction

#Region "Methods"

Public Sub BananaFunction()

End Sub

Public Function evaluateFunction(ByVal x As Double()) As Double

Dim term1 As Double = 100 * Math.Pow((x(1) - Math.Pow(x(0),

2.0)), 2.0)

Dim term2 As Double = Math.Pow((1 - x(0)), 2.0)

Return term1 + term2

End Function

#End Region

End Class

End Namespace

The class implements the Rosenbrock banana function described in the
fminsearch documentation.

7 If you are running Microsoft Visual Studio 2005, perform the following
actions. Otherwise, go to the next step.

4-100

Microsoft® Visual Basic® Integration Examples

a Click Project > project_name Properties.

b Select the Debug tab.

c In Start Options, enter -1.2 1.0 in the Command line arguments
field.

8 Customize the application using Visual Studio .NET using the OptimizeVBApp
folder, which contains a Visual Studio .NET project file for this example.

a The OptimizeVBApp folder contains a Visual Studio .NET project file for
this example. Open the project in Visual Studio .NET by double-clicking
OptimizeVBApp.vbproj in Windows Explorer. You can also open it from
the MATLAB desktop by right-clicking OptimizeVBApp.vbproj > Open
Outside MATLAB.

b Add a reference to the MWArray component, which is
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c If necessary, add (or fix the location of) a reference to the
OptimizeComp component which you built in a previous
step. (The component, OptimizeComp.dll, is in the
\OptimizeExample\OptimizeComp\x86\V2.0\Debug\distrib
subfolder of your work area.)

When run successfully, the program displays the following output:

Using initial points= -1.2000 1

** Properties of .NET Object **

h =

MathWorks.Examples.Optimize.BananaFunction handle w
ith no properties.

Package: MathWorks.Examples.Optimize

4-101

4 Component Integration

className =

MathWorks.Examples.Optimize.BananaFunction

Name Size Bytes Class Attributes

h 1x1 60 MathWorks.Examples.Optimize.BananaFunction

Methods for class MathWorks.Examples.Optimize.BananaFunction:

BananaFunction addlistener findprop lt
Equals delete ge ne
GetHashCode eq gt notify
GetType evaluateFunction isvalid
ToString findobj le

**************** Finished displayObj ****************

** Performing unconstrained nonlinear optimization **

directEval =

24.2000

wrapperEval =

24.2000

4-102

Microsoft® Visual Basic® Integration Examples

x =

1.0000 1.0000

fval =

8.1777e-010

***************** Finished doOptim ******************

Location of minimum: 1.0000 1.0000
Function value at minimum: 8.1777e-010

4-103

4 Component Integration

Component Access On Another Computer
To implement your .NET component on a computer other than the one on
which it was built:

1 If the component is not already installed on the machine where you want to
develop your application, run the self-extracting executable that you created
in “The Magic Square Example” on page 1-9.

This step is not necessary if you are developing your application on the same
machine where you created the .NET component.

2 Reference the .NET component in your Microsoft Visual Studio project or from
the command line of a CLS-compliant compiler.

You must also add a reference to the MWArray component in
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version.
See “Supported Microsoft .NET Framework Versions” for a list of supported
framework versions.

3 Instantiate the generated .NET Builder classes and call the class methods as
you would with any .NET class. To marshal data between the native .NET
types and the MATLAB array type, you need to use either the MWArray data
conversion classes or the MWArray native API. See MWArray Class Library
Reference (available online only) for details about the MWArray API for this
class library.

Tip Learn about creating type-safe interfaces for .NET components, in order
to avoid data conversion tasks with MWArray. See Chapter 6, “Type-Safe
Interfaces, WCF, and MEF” for details.

4-104

../MWArrayAPI/HTML/index.html
../MWArrayAPI/HTML/index.html

For More Information

For More Information

If you want to... See...

Learn how to build a component
and perform basic integration tasks
using C# code

Chapter 1, “Getting Started”

• Basic MATLAB Programmer
tasks

• How the deployment products
process your MATLAB functions

• How the deployment products
work together

Chapter 2, “MATLAB Code
Deployment”

Learn about supported MATLAB
Builder NE targets

Chapter 3, “Component Building”

Learn about creating type-safe
interfaces, in order to avoid data
conversion tasks with MWArray.

Chapter 6, “Type-Safe Interfaces,
WCF, and MEF”

Work with cell arrays and data
structures using native .NET types

“Using Native .NET Structure and
Cell Arrays” on page 8-7

Building your component and using
the Deployment Tool with the
command line option

Chapter 3, “Component Building”

4-105

4 Component Integration

4-106

5

Distribute to End Users

• “Deploying Components to End Users” on page 5-2

• “MCR Run-Time Options” on page 5-6

• “MCR Component Cache and CTF Archive Embedding” on page 5-9

• “The MCR User Data Interface” on page 5-12

• “Impersonation Implementation Using ASP.NET” on page 5-18

• “Enhanced XML Documentation Files” on page 5-22

5 Distribute to End Users

Deploying Components to End Users

Distribute MATLAB Code Using the MATLAB Compiler
Runtime (MCR)
On target computers without MATLAB, install the MCR, if it is not already
present on the deployment machine.

MATLAB Compiler Runtime (MCR) and the MCR Installer
The MATLAB Compiler Runtime (MCR) is an execution engine made up of
the same shared libraries MATLAB uses to enable the execution of MATLAB
files on systems without an installed version of MATLAB.

The MATLAB Compiler Runtime (MCR) is now available for downloading
from the Web to simplify the distribution of your applications or components
created with the MATLAB® Compiler. Direct your end users to the MATLAB
Compiler product page to download the MCR, as opposed to redistributing or
packaging it with your applications or components.

In order to deploy a component, you can either package the MCR along with it
or simply direct your end users to download it from the Web.

Before you utilize the MCR on a system without MATLAB, run the MCR
Installer. Locate the installer my entering the mcrinstaller command from
MATLAB.

The installer does the following:

1 Installs the MCR (if not already installed on the target machine)

2 Installs the component assembly in the folder from which the installer is
run

3 Copies the MWArray assembly to the Global Assembly Cache (GAC), as
part of installing the MCR

5-2

http://www.mathworks.com/products/compiler/
http://www.mathworks.com/products/compiler/

Deploying Components to End Users

MCR Prerequisites

1 Since installing the MCR requires write access to the system registry,
ensure you have administrator privileges to run the MCR Installer.

2 The version of the MCR that runs your application on the target computer
must be compatible with the version of MATLAB Compiler that built the
component.

3 Avoid installing the MCR in MATLAB installation directories.

Add the MCR Installer To Your Deployment Package
Include the MCR in your deployment by using the Deployment Tool.

On the Package tab of the deploytool interface, click Add MCR.

Note For more information about additional options for including the MCR
Installer (embedding it in your package or locating the installer on a network
share), see “Packaging (Optional)” in the MATLAB Compiler User’s Guide or
in your respective Builder User’s Guide.

Testing with the MCR
When you test with the MCR, keep in mind that the MCR is an instance of
MATLAB. Given this, it is not possible to load the MCR into MATLAB.

For example, if you build a generic COM component with the Deployment
Tool from MATLAB Builder NE, you generate a DLL.

If you then try to test the component with an application such as actxserver,
which loads its process into MATLAB, you are effectively loading the MCR
into MATLAB, producing an error such as this:

mwsamp.mymagic(3,[],[])
??? Invoke Error, Dispatch Exception:
Source: tmw1.Class1.1_0
Description: MCR instance is not available

5-3

5 Distribute to End Users

Therefore, understand the behaviors of third-party processes before
attempting to test them with the MCR.

If you are uncertain about the behavior of these processes, contact your
developer or systems administrator.

MCR Installation and Setting System Paths
To install the MCR, perform the following tasks on the target machines:

1 If you added the MCR during packaging, open the package to locate the
installer. Otherwise, run the command mcrinstaller to display the
locations where you can download the installer.

2 If you are running on a platform other than Windows, set the system
paths on the target machine. Setting the paths enables your application
to find the MCR.

Windows paths are set automatically. On Linux and Mac, you can use the
run script to set paths. See “Using MATLAB Compiler on Mac or Linux” for
detailed information on performing all deployment tasks specifically with
UNIX variants such as Linux and Mac.

Where to find the MWArray API. The MCR also includes MWArray.dll,
which contains an API for exchanging data between your applications and
the MCR. You can find documentation for this API in the Help folder of the
installation.

On target machines where the MCR Installer is run, the MCR Installer puts
the MWArray assembly in installation_folder\toolbox\dotnetbuilder\
bin\architecture\framework_version.

See MATLAB Builder NE Release Notes for a list of supported framework
versions.

Tip Learn about creating type-safe interfaces for .NET components, in order
to avoid data conversion tasks with MWArray. See Chapter 6, “Type-Safe
Interfaces, WCF, and MEF” for details.

5-4

Deploying Components to End Users

Sample Directory Structure of the MCR Including MWArray.dll

5-5

5 Distribute to End Users

MCR Run-Time Options

In this section...

“What Run-Time Options Can You Specify?” on page 5-6

“Getting MCR Option Values Using MWMCR” on page 5-6

What Run-Time Options Can You Specify?
As of R2009a, you can pass MCR run-time options -nojvm and -logfile
to MATLAB Builder NE from a client application using the assembly-level
attributes NOJVM and LOGFILE. You retrieve values of these attributes by
calling methods of the MWMCR class to access MCR attributes and MCR state.

Getting MCR Option Values Using MWMCR
The MWMCR class provides several methods to get MCR option values. The
following table lists methods supported by this class.

MWMCR Method Purpose

MWMCR.IsMCRInitialized() Returns true if MCR is initialized,
otherwise returns false.

MWMCR.IsMCRJVMEnabled() Returns true if MCR is launched
with .NET Virtual Machine (JVM),
otherwise returns false.

MWMCR.GetMCRLogFileName() Returns the name of the log file
passed with the LOGFILE attribute.

Default MCR Options
If you pass no MCR options (you provide no attributes), the MCR is launched
with default option values:

MCR Run-Time Option Default Option Values

.NET Virtual Machine (JVM) NOJVM(false)

Log file usage LOGFILE(null)

5-6

MCR Run-Time Options

These options are all write-once, read-only properties.

Use the following attributes to represent the MCR options you want to modify.

MWMCR Attribute Purpose

NOJVM Lets users launch MCR with or
without a JVM. It takes a Boolean
as input. For example, NOJVM(true)
launches MCR without a JVM.

LOGFILE Lets users pass the name of
a log file, taking the file
name as input. For example,
LOGFILE("logfile3.txt") .

Passing MCR Option Values from a C# Application. Following is
an example of how MCR option values are passed from a client-side C#
application:

[assembly: NOJVM(false), LOGFILE("logfile3.txt")]
namespace App1
{

class Program
{

static void Main(string[] args)
{

Console.WriteLine("In side main...");
try
{

myclass cls = new myclass();
cls.hello();
Console.WriteLine("Done!!");
Console.ReadLine();

}
catch (Exception ex)
{

Console.WriteLine(ex.Message);
}

}
}

5-7

5 Distribute to End Users

}

5-8

MCR Component Cache and CTF Archive Embedding

MCR Component Cache and CTF Archive Embedding

In this section...

“Overriding Default Behavior” on page 5-10

“For More Information” on page 5-11

CTF data is automatically embedded directly in .NET and COM components
and extracted to a temporary folder.

Automatic embedding enables usage of MCR Component Cache features
through environment variables.

These variables allow you to specify the following:

• Define the default location where you want the CTF archive to be
automatically extracted

• Add diagnostic error printing options that can be used when automatically
extracting the CTF, for troubleshooting purposes

• Tuning the MCR component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes

MCR_CACHE_ROOT When set to the location of
where you want the CTF
archive to be extracted, this
variable overrides the default
per-user component cache
location.

Does not apply

MCR_CACHE_VERBOSE When set to any value, this
variable prints logging details
about the component cache
for diagnostic reasons. This
can be very helpful if problems

Logging details are turned off
by default (for example, when
this variable has no value).

5-9

5 Distribute to End Users

Environment Variable Purpose Notes

are encountered during CTF
archive extraction.

MCR_CACHE_SIZE When set, this variable
overrides the default
component cache size.

The initial limit for this
variable is 32M (megabytes).
This may, however, be changed
after you have set the variable
the first time. Edit the file
.max_size, which resides in
the file designated by running
the mcrcachedir command,
with the desired cache size
limit.

You can override this automatic embedding and extraction behavior by
compiling with the “Overriding Default Behavior” on page 5-10 option.

Caution If you run mcc specifying conflicting wrapper and target types, the
CTF will not be embedded into the generated component. For example, if
you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the CTF embedded in it, as if you had
specified a -C option to the command line.

Overriding Default Behavior
To extract the CTF archive in a manner prior to R2008b, alongside the
compiled .NET or COM component, compile using the option mcc -C.

You can also implement this override by checking the appropriate Option in
the Deployment Tool.

You might want to use this option to troubleshoot problems with the CTF
archive, for example, as the log and diagnostic messages are much more
visible.

5-10

MCR Component Cache and CTF Archive Embedding

For More Information
For more information about the CTF archive, see “Component Technology
File (CTF Archive)”.

5-11

5 Distribute to End Users

The MCR User Data Interface
This feature allows data to be shared between an MCR instance, the MATLAB
code running on that MCR, and the wrapper code that created the MCR.
Through calls to the MCR User Data interface API, you access MCR data by
creating a per-MCR-instance associative array of mxArrays, consisting of a
mapping from string keys to mxArray values. Reasons for doing this include,
but are not limited to:

• You need to supply run-time profile information to a client running an
application created with the Parallel Computing Toolbox™ software.
Profiles may be supplied (and changed) on a per-execution basis. For
example, two instances of the same application may run simultaneously
with different profiles.

• You want to initialize the MCR with constant values that can be accessed
by all your MATLAB applications.

• You want to set up a global workspace — a global variable or variables that
MATLAB and your client can access.

• You want to store the state of any variable or group of variables.

MATLAB Builder NE software supports a per-MCR instance state access
through an object-oriented API. Unlike MATLAB Compiler, access to a
per-MCR instance state is optional, rather than on by default. You can access
this state by adding setmcruserdata.m and getmcruserdata.m to your
deployment project or by specifying them on the command line. Alternatively,
you can use a helper function to call these methods as shown in “Supplying
Cluster Profiles for Parallel Computing Toolbox Applications” on page 5-12.

For more information, see“Improving Data Access Using the MCR User Data
Interface” in the MATLAB Compiler User’s Guide.

Supplying Cluster Profiles for Parallel Computing
Toolbox Applications
Following is a complete example of how you can use the MCR User Data
Interface as a mechanism to specify a cluster profile for Parallel Computing
Toolbox applications.

5-12

The MCR User Data Interface

Note Standalone executables and shared libraries generated from MATLAB
Compiler for parallel applications can now launch up to twelve local workers
without MATLAB Distributed Computing Server™.

Step 1: Write Your Parallel Computing Toolbox Code

1 Compile sample_pct.m in MATLAB.

This example code uses the cluster defined in the default profile.

The output assumes that the default profile is local.

function speedup = sample_pct (n)
warning off all;
tic
if(ischar(n))

n=str2double(n);
end
for ii = 1:n

(cov(sin(magic(n)+rand(n,n))));
end
time1 =toc;
matlabpool('open');
tic
parfor ii = 1:n

(cov(sin(magic(n)+rand(n,n))));
end
time2 =toc;
disp(['Normal loop times: ' num2str(time1) ...

',parallel loop time: ' num2str(time2)]);
disp(['parallel speedup: ' num2str(1/(time2/time1)) ...

' times faster than normal']);
matlabpool('close');
disp('done');
speedup = (time1/time2);

2 Run the code as follows after changing the default profile to local, if
needed.

5-13

5 Distribute to End Users

a = sample_pct(200)

3 Verify that you get the following results;

Starting matlabpool using the 'local'
profile ... connected to 4 labs.

Normal loop times: 1.4625, parallel loop time: 0.82891
parallel speedup: 1.7643 times faster than normal
Sending a stop signal to all the labs ... stopped.
done
a =

1.7643

Step 2: Set the Parallel Computing Toolbox Profile
In order to compile MATLAB code to a .NET component and utilize the
Parallel Computing Toolbox, the mcruserdata must be set directly from
MATLAB. There is no .NET API available to access the MCRUserdata as there
is for C and C++ applications built with MATLAB Compiler.

To set the mcruserdata from MATLAB, create an init function in your .NET
class. This is a separate MATLAB function that uses setmcruserdata to
set the Parallel Computing Toolbox profile once. You then call your other
functions to utilize the Parallel Computing Toolbox functions.

Create the following init function:

function init_sample_pct
% Set the Parallel Profile:
if(isdeployed)

[profile, profpath] = uigetfile('*.settings');
% let the USER select file

setmcruserdata('ParallelProfile', fullfile(profpath, profile));
end

5-14

The MCR User Data Interface

Step 3: Compile Your Function with the Deployment Tool or
the Command Line
You can compile your function from the command line by entering the
following:

mcc -W 'dotnet:netPctComp,NetPctClass'

init_sample_pct.m sample_pct.m -T link:lib

Alternately, you can use the Deployment Tool as follows:

1 Follow the steps in “Deployable Component Creation” on page 1-13 to
compile your application. When the compilation finishes, a new folder
(with the same name as the project) is created. This folder contains two
subfolders: distrib and src.

Project Name netPctComp

Class Name NetPctClass

File to Compile sample_pct.m and
init_sample_pct.m

Note If you are using the GPU feature of Parallel Computing Toolbox, you
need to manually add the PTX and CU files.

If you are using a Deployment Tool project, click Add files/directories
on the Build tab.

If you are using the mcc command, use the -a option.

2 To deploy the compiled application, copy the distrib folder, which contains
the following, to your end users. The packaging function of deploytool
offers a convenient way to do this.

• netPctComp.dll

• MWArray.dll

• MCR Installer

• Cluster profile

5-15

5 Distribute to End Users

Note The end user’s target machine must have access to the cluster.

Tip Learn about creating type-safe interfaces for .NET components,
in order to avoid data conversion tasks with MWArray. See Chapter 6,
“Type-Safe Interfaces, WCF, and MEF” for details.

Step 4: Write the .NET Driver Application
After adding references to your component and to MWArray in your Microsoft
Visual Studio project: write the following .NET driver application to use
the component, as follows. See “Creating a Reference to Your Component”
on page 1-28 and “Creating a Reference to the MWArray API” on page 1-28
in the Chapter 1, “Getting Started” chapter of this User’s Guide for more
information.

Note This example code was written using Microsoft Visual Studio 2008.

using System;
using MathWorks.MATLAB.NET.Utility;
using MathWorks.MATLAB.NET.Arrays;
using netPctComp;
namespace PctNet
{

class Program
{

static void Main(string[] args)
{

try
{

NetPctClass A = new NetPctClass();
// Initialize the PCT set up
A.init_sample_pct();
double var = 300;
MWNumericArray out1;

5-16

The MCR User Data Interface

MWNumericArray in1 = new MWNumericArray(300);
out1 = (MWNumericArray)A.sample_pct(in1);
Console.WriteLine("The speedup is {0}", out1);
Console.ReadLine();

// Wait for user to exit application
}
catch (Exception exception)
{

Console.WriteLine("Error: {0}", exception);
}

}
}

}

The output is as follows:

5-17

5 Distribute to End Users

Impersonation Implementation Using ASP.NET
When running third-party software (for example, SQL Server™) there
are times when it is necessary to use impersonation to perform Windows
authentication in an ASP.NET application.

In deployed applications, impersonated credentials are passed in from
IIS. However, since impersonation operates on a per-thread basis, this
can sometimes present problems when processing the MCR thread in a
multi-threaded deployed application.

Use the following examples to turn impersonation on and off in your MATLAB
file, to avoid problems stemming from MCR thread processing issues.

Turning On Impersonation in a MATLAB MEX-file

#include mex.h
#include windows.h

/*
*This mex function is called with a single int which
*represents the user
*identity token. We use this token to impersonate a
*user on the interpreter
*thread. This acts as a workaround for ASP.NET
*applications that use
*impersonation to pass the proper credentials
*to SQL Server for windows
*authentication. The function returns non zero status
*for success, zero otherwise.
**/

void mexFunction(int nlhs,
mxArray * plhs[],
int nrhs,
const mxArray * prhs[])

{
plhs[0] = mxCreateDoubleScalar(0); //return status

HANDLE hToken =
reinterpret_cast(*(mwSize *)mxGetData(prhs[0]));

5-18

Impersonation Implementation Using ASP.NET

if(nrhs != 1)
{

mexErrMsgTxt("Incorrect number of input argument(s).
Expecting 1.");

}

int hr;

if(!(hr = ImpersonateLoggedOnUser(hToken)))
{

mexErrMsgTxt("Error impersonating.\n");
}

*(mxGetPr(plhs[0])) = hr;
}

Turning Off Impersonation in a MATLAB MEX-file

#include mex.h
#include windows.h

/*
*This mex function reverts to the old identity on the

interpreter thread **/
void mexFunction(int nlhs,

mxArray * plhs[],
int nrhs,
const mxArray * prhs[])

{
if(!RevertToSelf())
{

mexErrMsgTxt("Failed to revert to the old
identity.");

}
}

Code Added to Support Impersonation in ASP.NET Application

Monitor.Enter(someObj);

5-19

5 Distribute to End Users

DeployedComponent.DeployedComponentClass myComp;

try
{

System.Security.Principal.WindowsIdentity myIdentity =
System.Security.Principal.WindowsIdentity.GetCurrent();

//short circuit if user app is not impersonated
if(myIdentity.isImpersonated())
{

myComp = new DeployedComponent.
DeployedComponentClass ();

//Run Users code

MWArray[] output = myComp.impersonateUser(1,
getToken());

}
else
{

//Run Users code
}

}
Catch(Exception e)
{
}
finally
{

if(myComp!=null)
myComp.stopImpersonation();

Monitor.Exit(someObj;)
}

//
//
//Utility method to read the token for the current user
//and wraps it in a MWArray private MWNumericArray getToken()

{

5-20

Impersonation Implementation Using ASP.NET

System.Security.Principal.WindowsIdentity myIdentity =
System.Security.Principal.WindowsIdentity.GetCurrent();

MWNumericArray a = null;

if (IntPtr.Size == 4)
{

int intToken = myIdentity.Token.ToInt32();
a = new MWNumericArray(intToken, false);

}
else
{

Int64 intToken = myIdentity.Token.ToInt64();
a = new MWNumericArray(intToken, false);

}
return a;

5-21

5 Distribute to End Users

Enhanced XML Documentation Files
Every MATLAB® Builder NE component includes a readme.txt file in the
src and distrib directories. This file outlines the contents of auto-generated
documentation templates included with your built component. The
documentation templates are HTML and XML files that can be read and
processed by any number of third-party tools.

• MWArray.xml — This file describes the MWArray data conversion classes
and their associated methods. Documentation for MWArray classes and
their methods are available here.

• component_name.xml — This file contains the code comments for your
component. Using a third party documentation tool, you can combine this
file with MWArray.xml to produce a complete documentation file that can be
packaged with the component assembly for distribution to end users.

• component_name_overview.html — Optionally include this file in the
generated documentation file. It contains an overview of the steps needed
to access the component and how to use the data conversion classes,
contained in the MWArray class hierarchy, to pass arguments to the
generated component and return the results.

5-22

6

Type-Safe Interfaces, WCF,
and MEF

• “Type-Safe Interface Generation and Implementation” on page 6-2

• “Windows Communications Foundation (WCF)™-Based Components” on
page 6-17

• “Managed Extensibility Framework (MEF) Plug-Ins” on page 6-33

6 Type-Safe Interfaces, WCF, and MEF

Type-Safe Interface Generation and Implementation

In this section...

“Type-Safe Interfaces: An Alternative to Manual Data Marshaling” on
page 6-2

“Advantages of Implementing a Type-Safe Interface” on page 6-4

“How Type-Safe Interfaces Work” on page 6-5

“Implementing a Type-Safe Interface” on page 6-7

Type-Safe Interfaces: An Alternative to Manual Data
Marshaling

.NET Developer

Role Knowledge Base Responsibilities

.NET
Developer

• Little to no MATLAB
experience

• Moderate IT experience

• .NET expert

• Minimal access to IT
systems

• Integrates deployed
component with the rest
of the .NET application

MATLAB’s data types are incompatible with native .NET types.

To send data between your application and .NET, you perform these tasks:

1 Marshal data from .NET input data to a deployed function by creating an
MWArray object from native .NET data. The public functions in a deployed
component return MWArray objects.

2 Marshal the output MATLAB data in an MWArray into native .NET data by
calling one of the MWArray marshaling methods (ToArray(), for example).

6-2

Type-Safe Interface Generation and Implementation

Manual Data Marshaling Without a Type-Safe Interface

As you can see, manually marshaling data adds complexity and potential
failure points to the task of integrating deployed components into a .NET
application. This is particularly true for these reasons:

• Your application cannot detect type mismatch errors until
run-time. For example, you might accidentally create an MWArray from a
string and pass the array to a deployed function that expects a number.
Because the wrapper code generated by MATLAB Builder NE expects
an MWArray, the .NET compiler is unable to detect this error and the
deployed function either throws an exception or returns the wrong answer.

• Your end users must learn how to use the MWArray data type or
alternately mask the MWArray data type behind a manually written (and
manually maintained) API. This introduces unwanted training time and
places resource demands on a potentially overcommitted staff.

You can avoid performing tedious MWArray data marshaling by using type-safe
interfaces. Such interfaces minimize explicit type conversions by hiding the
MWArray type from the calling application. Using type-safe interfaces allows
.NET Developers to work directly with familiar native data types.

6-3

6 Type-Safe Interfaces, WCF, and MEF

Simplified Data Marshaling With a Type-Safe Interface

Advantages of Implementing a Type-Safe Interface
Some of the reasons to implement type-safe interfaces include:

• You avoid training and coding costs associated with teaching end
users to work with MWArrays.

• You minimize cost of data you must marshal by either placing MWArray
objects in type-safe interfaces or by calling MWArray-based functions in the
deployed component.

• Flexibility — you mix type-safe interfaces with manual data
marshaling to accommodate data of varying sizes and access patterns. For
example, you may have a few large data objects (images, for example) that
would incur excess cost to your organization if managed with a type-safe
interface. By mixing type-safe interfaces and manual marshaling, smaller
data types can be managed automatically with the type-safe interface and
your large data can be managed on an as-needed basis.

6-4

Type-Safe Interface Generation and Implementation

How Type-Safe Interfaces Work
Every MATLAB Builder NE component exports one or more public methods
that accept and return data using MWArrays.

Adding a type-safe interface to a MATLAB Builder NE component creates
another set of methods (with the same names) that accept and return native
.NET types.

The figure Architecture of a Deployed Component with a Type-Safe Interface
on page 6-6 illustrates the data paths between the .NET host application
and the deployed MATLAB function.

6-5

6 Type-Safe Interfaces, WCF, and MEF

Architecture of a Deployed Component with a Type-Safe Interface

The MATLAB function addOne returns its input plus one.

6-6

Type-Safe Interface Generation and Implementation

Deploying addOne with a type-safe interface creates two .NET addOne
methods: one that accepts and returns .NET doubles, and one that accepts
are returns MWArray. See MATLAB documentation for matching rules.

You may create multiple type-safe interface methods for a single MATLAB
function. Type-safe interface methods follow the standard .NET methods
for overloading.

Notice that the type-safe methods co-exist with (and do not replace) the
MWArray-based methods. Your .NET application may mix and match calls to
either type of method, as appropriate.

You may find MWArray methods more efficient when passing large data
values in loops to one or more deployed functions. In such cases, creating
an MWArray object allows you to marshal the data only once whereas the
type-safe interface marshals inputs on every call.

Implementing a Type-Safe Interface
Implementing a type-safe interface usually requires the expertise of a .NET
Developer (see description of .NET Developer on page 8-21) because it requires
performing a number of medium-to-advanced programming tasks.

Tip Data objects that merely pass through either the target or MATLAB
environments may not need to be marshaled, particularly if they do not cross
a process boundary. Because marshaling is costly, only marshal on demand.

To implement a type-safe interface, follow this general workflow. Depending
on whether you are primarily a MATLAB programmer or .NET developer, you
may prefer to perform Steps 1 and 2 in reverse order.

1 “Write and Test Your MATLAB Code” on page 6-20

2 “Develop Your Interface Using Native .NET Types” on page 6-8

3 “Build Your Component and Generate Your Type-Safe API” on page 6-22

4 “Develop a Main Program Using Your Interface” on page 6-13

6-7

6 Type-Safe Interfaces, WCF, and MEF

5 “Compile the Main Program” on page 6-15

6 “Run the Main Program” on page 6-16

Write and Test Your MATLAB Code
Create your MATLAB program and then test the code before implementing a
type-safe interface. The functions in your MATLAB program must match the
declarations in your native .NET interface.

In the following example, the deployable MATLAB code contains one exported
function, addOne. The addOne function adds the value one (1) to the input
received. The input must be numeric, either a scalar or a matrix of single or
multiple dimensions.

function y = addOne(x)
% ADDONE Add one to numeric input. Input must be numeric.

if ~isnumeric(x)
error('Input must be numeric. Input was %s.', class(x));

end
y = x + 1;

end

Note addOne must perform run-time type checking to ensure valid input.

Develop Your Interface Using Native .NET Types
After you write and test your MATLAB code, develop a .NET interface that
supports the native types through the API in either C# or Visual Basic . In
this example, the interface, IAddOne, is written in C#.

Define IAddOne Methods. Each method in the interface must exactly
match a deployed MATLAB function.

The IAddOne interface specifies six overload of addOne:

using System.ServiceModel;

6-8

Type-Safe Interface Generation and Implementation

[ServiceContract]
public interface IAddOne
{

[OperationContract(Name = "addOne_1")]
int addOne(int x);

[OperationContract(Name = "addOne_2")]
void addOne(ref int y, int x);

[OperationContract(Name = "addOne_3")]
void addOne(int x, ref int y);

[OperationContract(Name = "addOne_4")]
System.Double addOne(System.Double x);

[OperationContract(Name = "addOne_5")]
System.Double[] addOne(System.Double[] x);

[OperationContract(Name = "addOne_6")]
System.Double[][] addOne(System.Double[][] x);

}

As you can see, all methods have one input and one output (to match the
MATLAB addOne function), though the type and position of these parameters
varies.

The following code snippets provide samples of how to work with your function
and the overloads in the context of the interface.

Data Conversion Rules for Using the Type-Safe Interface

• In a MATLAB function, declaration outputs appear before inputs. For
example, in the addOne function, the output y appears before the input x.
This ordering is not required for .NET interface functions. Inputs may
appear before or after outputs or the two may be mixed together.

• MATLAB Builder NE matches .NET interface functions to public MATLAB
functions by function name and argument count. In the addOne example in
this chapter, both the .NET interface function and the MATLAB function

6-9

6 Type-Safe Interfaces, WCF, and MEF

must be named addOne and both functions must have an equal number of
arguments defined.

• The number and relative order of input and output arguments is critical.

- In evaluating parameter order, only the order of like parameters
(inputs or outputs) is considered, regardless of where they appear in
the parameter list.

- An interface may have fewer inputs than MATLAB functions, but not
more.

• Argument mapping occurs according to argument order rather than
argument name.

• The function return value, if specified, counts as the first output.

• You must use out parameters for multiple outputs.

- Alternately, the ref parameter can be used for out. ref and out
parameters are synonymous.

• MATLAB does not support overloading of functions. Thus, all user-supplied
overloads of a function with a given name will map to a function (with an
identical name) generated by MATLAB Builder NE.

See “.NET Types to MATLAB Types” on page 10-7 for complete guidelines in
managing data conversion with type-safe interfaces.

Specifying Outputs

function result = compute(x, y)

void compute(int x, double[] y, ref string result);
string result(int x, double[] y);

Independent Ordering of Input and Output Parameters

function [a, b, c] = compute(x, y)
// All outputs before any input:
void compute(out int[] a, ref int[] b, ref int[] c,

int[] x, int[] y);
// Inputs before outputs
int[] compute(int[] x, int[]y, ref int[] b, ref int[] c);

6-10

Type-Safe Interface Generation and Implementation

// Inputs and outputs are interwoven
int[] compute(int[] x, ref int[] b, int[] y, ref int[] c);

Compile IAddOne into an Assembly. Compile IAddOne.cs into an
assembly using Microsoft Visual Studio.

Note This example assumes your assembly contains only IAddOne.
Realistically, it is more likely that IAddOne will already be part of a compiled
assembly. The assembly may be complete even before the MATLAB function
is written.

Build Your Component and Generate Your Type-Safe API
Use either the Deployment Tool (deploytool) or the deployment command
line tools to generate the type-safe API.

Using the Deployment Tool. The Deployment Tool generates the type-safe
API, when you build your component, if the correct options are selected in the
Settings dialog box.

1 Create your Deployment Tool project. Follow the steps in “Deployable
Component Creation” on page 1-13 in the Chapter 1, “Getting Started”
chapter of this user’s guide.

When defining your project, use these values:

Project Name AddOneComp

Class Name Mechanism

File to compile addOne

Note Do not click the Build button at this time.

2 Click the Actions () button.

3 Select Settings.

6-11

6 Type-Safe Interfaces, WCF, and MEF

4 On the Type-Safe API tab, do the following:

a Select Enable Type-Safe API.

b In the Interface assembly field, specify the location of the
type-safe/WCF interface assembly that you built.

c Select IAddOne from the .NET interface drop-down box. The interface
name is usually prefixed by an I.

Tip If the drop-down is blank, the Deployment Tool may have been
unable to find any .NET interfaces in the assembly you selected. Select
another assembly.

d Specify Mechanism, as the class name you want the generated API to
wrap, in the Wrapped Class field.

e Click Close to dismiss the Settings dialog box.

Note Leave the Namespace field blank.

5 Build the project as usual by clicking the Build button.

Using the Deployment Command-Line Tools. To generate the type-safe
API with your component build (compilation) using mcc, do the following:

1 Build the component by entering this command from MATLAB:

mcc -v -B 'dotnet:AddOneComp,Mechanism,3.5,private,local'
addOne

See the mcc reference page in this user’s guide for details on the options
specified.

2 Generate the type-safe API by entering this command from MATLAB:

ntswrap -c AddOneComp.Mechanism -i IAddOne -a IAddOne.dll

6-12

Type-Safe Interface Generation and Implementation

where:

• -c specifies the namespace-qualified name of the MATLAB Builder
NE component to wrap with a type-safe API. If the component is
scoped to a namespace, specify the full namespace-qualified name
(AddOneComp.Mechanism in the example). Because no namespace is
specified by ntswrap, the type-safe interface class appears in the global
namespace.

• -i specifies the name of the .NET interface that defines the type-safe
API. The interface name is usually prefixed by an I.

• -a specifies the absolute or relative path to the assembly containing the
.NET statically-typed interface, referenced by the -i switch.

Tip If the assembly containing the .NET interface IAddOne is not in the
current folder, specify the full path.

Caution Not all arguments are compatible with each other. See the
ntswrap reference page in this user’s guide for details on all command
options.

Develop a Main Program Using Your Interface
You have now built your component and generated a type-safe API to work
with it. Next, you need to develop a main program (AddMaster.cs) that calls
all the overloads of addOne defined by the IAddOne interface you developed
earlier:

Where To Find Example Code

Selected example code can be found, along with some Microsoft Visual Studio
projects, in matlabroot\toolbox\dotnetbuilder\Examples. This code has
been tested to be compliant with Microsoft Visual Studio 2008 and with
Microsoft Visual Studio 2005 running on Microsoft .NET Framework version
3.5 or higher.

6-13

6 Type-Safe Interfaces, WCF, and MEF

AddMaster.cs Program

using System;
using System.Text;
using AddOneComp;
public class Program
{

static public int Main(string[] argList)
{

IAddOne m = new MechanismIAddOne();
try
{

// Output as return value
int one = 1;
int two = m.addOne(one);
Console.WriteLine("addOne({0}) = {1}", one, two);

// Output: first parameter
int i16 = 16;
int o17;
m.addOne(ref o17, i16);
Console.WriteLine("addOne({0}) = {1}", i16, o17);

// Output: second parameter
int three;
m.addOne(two, ref three);
Console.WriteLine("addOne({0}) = {1}",

two, three);

// Scalar doubles
double i495 = 495.0;
double third = m.addOne(i495);
Console.WriteLine("addOne({0}) = {1}",i495, third);

// Vector addition
System.Double[] i = { 30, 60, 88 };
System.Double[] o = m.addOne(i);
Console.WriteLine(

"addOne([{0} {1} {2}]) = [{3} {4} {5}]",
i[0], i[1], i[2], o[0], o[1], o[2]);

6-14

Type-Safe Interface Generation and Implementation

// Matrix addition
System.Double[,] i2 = { {0, 2}, {3, 1} };
System.Double[,] o2 = m.addOne(i2);
Console.WriteLine(

"addOne([{0} {1}; {2} {3}]) = [{4} {5}; {6} {7}]",
i2[0,0], i2[0,1], i2[1,0], i2[1,1],
o2[0,0], o2[0,1], o2[1,0], o2[1,1]);

}
catch (Exception Ex)
{

Console.WriteLine("Exception " + Ex.Message);
return(-1);

}
Console.WriteLine("No Exceptions");
return(0);

}
}

Compile the Main Program
Compile the main program using Microsoft Visual Studio by doing the
following:

1 Create a Microsoft Visual Studio project named AddMaster.

2 Add references in the project to the following files:

This Reference... Defines...

IAddOne.dll The .NET native type interface
IAddOne

MechanismIAddOne.dll The generated type-safe API

AddOneCompNative.dll The MATLAB Builder NE
component

6-15

6 Type-Safe Interfaces, WCF, and MEF

Note Unlike other .NET deployment scenarios, you do not need to
reference MWArray.dll in the server program source code. The MWArray
data types are hidden behind the type-safe API in MechanismIAddOne.

3 Compile the program with Microsoft Visual Studio.

Run the Main Program
Run the main program from a command line.

The output should look similar to the following.

addOne(1) = 2
addOne(16) = 17
addOne(2) = 3
addOne(495) = 496
addOne([30 60 88]) = [31 61 89]
addOne([0 2; 3 1]) = [1 3; 4 2]
No Exceptions

6-16

Windows® Communications Foundation (WCF)™-Based Components

Windows Communications Foundation (WCF)™-Based
Components

In this section...

“What Is WCF?” on page 6-17

“Before Running the WCF Example” on page 6-18

“Deploying a WCF-Based Component” on page 6-19

What Is WCF?

.NET Developer

Role Knowledge Base Responsibilities

.NET
Developer

• Little to no MATLAB
experience

• Moderate IT experience

• .NET expert

• Minimal access to IT
systems

• Integrates deployed
component with the rest
of the .NET application

The Windows Communication Foundation™ (or WCF) is an application
programming interface in the .NET Framework for building connected,
service-oriented, Web-centric applications.

WCF supports distributed computing using a service-oriented architecture.
Clients consume multiple services that can be consumed by multiple clients.
Services are loosely coupled to each other.

Services typically have a WSDL interface (Web Services Description
Language), which any WCF client can use to consume the service, regardless
of which platform the service is hosted on.

6-17

6 Type-Safe Interfaces, WCF, and MEF

A WCF client connects to a WCF service via an endpoint. Each service exposes
its contract via one or more endpoints. An endpoint has an address, which is a
URL specifying where the endpoint can be accessed, and binding properties
that specify how the data will be transferred.

What’s the Difference Between WCF and .NET Remoting?
You generate native .NET objects using .NET Remoting and native .NET
types using WCF.

What’s the difference between these two technologies and which should you
use?

WCF is an end-to-end Web Service. Many of the advantages afforded by .NET
Remoting—a wide selection of protocol interoperability, for instance—can be
achieved with a WCF interface, in addition to having access to a richer, more
flexible set of native data types. .NET Remoting can only support native
objects.

WCF offers more robust choices in most every aspect of Web-based
development, even implementation of a Java client, for example.

For More information About WCF
For up-to-date information regarding WCF, refer to the MSDN article
“Windows Communication Foundation.”

Before Running the WCF Example
Before running this example, keep the following in mind:

• You must be running at least Microsoft .NET Framework 3.5 to use the
WCF feature.

• If you want to use WCF, the easiest way to do so is through the type-safe
API. Therefore, you should be familiar with the “Type-Safe Interface
Generation and Implementation” on page 6-2 section before attempting to
run the WCF example.

• WCF and .NET Remoting are not compatible in the same deployment
project or component.

6-18

http://msdn.microsoft.com/en-us/netframework/aa663324.aspx

Windows® Communications Foundation (WCF)™-Based Components

• The example in this chapter requires both client and server to use message
sizes larger than the WCF defaults. For information about changing
the default message size, see the MSDN article regarding setting of the
maxreceivedmessagesize property.

Deploying a WCF-Based Component
Deploying a WCF-based component requires the expertise of a .NET
Developer (see description of .NET Developer on page 8-21) because it requires
performing a number of advanced programming tasks.

Where To Find Example Code

Selected example code can be found, along with some Microsoft Visual Studio
projects, in matlabroot\toolbox\dotnetbuilder\Examples. This code has
been tested to be compliant with Microsoft Visual Studio 2008 and with
Microsoft Visual Studio 2005 running on Microsoft .NET Framework version
3.5 or higher.

To deploy a WCF-based component, follow this general workflow:

1 “Write and Test Your MATLAB Code” on page 6-20

2 “Develop Your WCF Interface” on page 6-20

3 “Build Your Component and Generate Your Type-Safe API” on page 6-22

4 “Develop Server Program Using the WCF Interface” on page 6-24

5 “Compile the Server Program” on page 6-27

6 “Run the Server Program” on page 6-28

7 “Generate Proxy Code for Clients” on page 6-28

8 “Compile the Client Program” on page 6-29

9 “Run the Client Program” on page 6-32

6-19

http://msdn.microsoft.com/en-us/library/system.servicemodel.basichttpbinding.maxreceivedmessagesize.aspx

6 Type-Safe Interfaces, WCF, and MEF

Write and Test Your MATLAB Code
Create your MATLAB program and then test the code before implementing a
type-safe interface. The functions in your MATLAB program must match the
declarations in your native .NET interface.

In the following example, the deployable MATLAB code contains one exported
function, addOne. The addOne function adds the value one (1) to the input
received. The input must be numeric, either a scalar or a matrix of single or
multiple dimensions.

function y = addOne(x)
% ADDONE Add one to numeric input. Input must be numeric.

if ~isnumeric(x)
error('Input must be numeric. Input was %s.', class(x));

end
y = x + 1;

end

Note addOne must perform run-time type checking to ensure valid input.

Develop Your WCF Interface
After you write and test your MATLAB code, develop an interface in either C#
or Visual Basic that supports the native types through the API.

Define IAddOne Overloads. See “Develop Your Interface Using Native
.NET Types” on page 6-8 for complete rules on defining interface overloads.

In addition, when using WCF, your overloaded functions must have unique
names.

Note that in the WCF implementation of addOne, you decorate the
methods with the OperationContract property. You give each method
a unique operation name, which you specify with the Name property of
OperationContract, as in this example:

6-20

Windows® Communications Foundation (WCF)™-Based Components

using System.ServiceModel;

[ServiceContract]
public interface IAddOne
{

[OperationContract(Name = "addOne_1")]
int addOne(int x);

[OperationContract(Name = "addOne_2")]
void addOne(ref int y, int x);

[OperationContract(Name = "addOne_3")]
void addOne(int x, ref int y);

[OperationContract(Name = "addOne_4")]
System.Double addOne(System.Double x);

[OperationContract(Name = "addOne_5")]
System.Double[] addOne(System.Double[] x);

[OperationContract(Name = "addOne_6")]
System.Double[][] addOne(System.Double[][] x);

}

As you can see, the IAddOne interface specifies six overloads of the addOne
function. Also, notice that all have one input and one output (to match the
MATLAB addOne function), though the type and position of these parameters
varies.

For additional code snippets and data conversion rules regarding type-safe
interfaces, see “Develop Your Interface Using Native .NET Types” on page 6-8.

For more information on WCF contracts and properties, see the Microsoft
WCF Web Site.

Compile IAddOne into an Assembly. Compile IAddOne.cs into an
assembly using Microsoft Visual Studio.

6-21

http://msdn.microsoft.com/en-us/netframework/aa663324
http://msdn.microsoft.com/en-us/netframework/aa663324

6 Type-Safe Interfaces, WCF, and MEF

Note This example assumes your assembly contains only IAddOne.
Realistically, it is more likely that IAddOne will already be part of a compiled
assembly. The assembly may be complete even before the MATLAB function
is written.

Build Your Component and Generate Your Type-Safe API
Use either the Deployment Tool (deploytool) or the deployment command
line tools to generate the type-safe API.

Using the Deployment Tool. The Deployment Tool generates the type-safe
API, when you build your component, if the correct options are selected in the
Settings dialog box.

1 Create your Deployment Tool project. Follow the steps in “Deployable
Component Creation” on page 1-13 in the Chapter 1, “Getting Started”
chapter of this user’s guide.

When defining your project, use these values:

Project Name AddOneComp

Class Name Mechanism

File to compile addOne

Note Do not click the Build button at this time.

2 Click the Actions () button.

3 Select Settings.

4 On the Type-Safe API tab, do the following:

a Select Enable Type-Safe API.

b In the Interface assembly field, specify the location of the
type-safe/WCF interface assembly that you built.

6-22

Windows® Communications Foundation (WCF)™-Based Components

c Select IAddOne from the .NET interface drop-down box. The interface
name is usually prefixed by an I.

Tip If the drop-down is blank, the Deployment Tool may have been
unable to find any .NET interfaces in the assembly you selected. Select
another assembly.

d Specify Mechanism, as the class name you want the generated API to
wrap, in the Wrapped Class field.

e Click Close to dismiss the Settings dialog box.

Note Leave the Namespace field blank.

5 Build the project as usual by clicking the Build button.

Using the Deployment Command-Line Tools. To generate the type-safe
API with your component build (compilation) using mcc, do the following:

1 Build the component by entering this command from MATLAB:

mcc -v -B 'dotnet:AddOneComp,Mechanism,3.5,private,local'
addOne

See the mcc reference page in this user’s guide for details on the options
specified.

2 Generate the type-safe API by entering this command from MATLAB:

ntswrap -c AddOneComp.Mechanism -i IAddOne -a IAddOne.dll

where:

• -c specifies the namespace-qualified name of the MATLAB Builder
NE component to wrap with a type-safe API. If the component is
scoped to a namespace, specify the full namespace-qualified name
(AddOneComp.Mechanism in the example). Because no namespace is

6-23

6 Type-Safe Interfaces, WCF, and MEF

specified by ntswrap, the type-safe interface class appears in the global
namespace.

• -i specifies the name of the .NET interface that defines the type-safe
API. The interface name is usually prefixed by an I.

• -a specifies the absolute or relative path to the assembly containing the
.NET statically-typed interface, referenced by the -i switch.

Tip If the assembly containing the .NET interface IAddOne is not in the
current folder, specify the full path.

Caution Not all arguments are compatible with each other. See the
ntswrap reference page in this user’s guide for details on all command
options.

Develop Server Program Using the WCF Interface
You have now built your component and generated a WCF-compliant
type-safe API.

Next, develop a server program that provides access (via the
WCFServiceContract) to the overloads of addOne defined by the WCF IAddOne
interface. The program references an App.config XML configuration file.

The WCF server program loads the WCF-based addOne.Mechanism component
and makes it available to SOAP clients via the type-safe mechanismIAddOne
interface.

About Jagged Array Processing When writing your interface, you will be
coding to handle jagged arrays, as opposed to rectangular arrays. For more
information about jagged arrays, see “Jagged Array Processing” on page 4-24
in Chapter 4, “Component Integration” in this user’s guide.

6-24

Windows® Communications Foundation (WCF)™-Based Components

WCF Server Program

using System;
using System.Text;
using System.ServiceModel;

namespace AddMasterServer
{

class AddMasterServer
{

static void Main(string[] args)
{

try
{

using (ServiceHost host =
new ServiceHost(typeof(MechanismIAddOne)))

{
host.Open();
Console.WriteLine("

AddMaster Server is up running......");
Console.WriteLine("

Press any key to close the service.");
Console.ReadLine();
Console.WriteLine("Closing service...");

}
}
catch (Exception ex)
{

Console.WriteLine(ex.Message);
}

}
}

}

App.config XML file

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.web>

6-25

6 Type-Safe Interfaces, WCF, and MEF

<compilation debug="true" />
</system.web>
<system.serviceModel>

<services>
<service behaviorConfiguration=
"AddMaster.ServiceBehavior" name="MechanismIAddOne">
<endpoint

address=""
binding="wsHttpBinding"
contract="IAddOne"
name="HttpBinding" />

<endpoint
address=""
binding="netTcpBinding"
contract="IAddOne"
name="netTcpBinding" />
<endpoint

address="mex"
binding="mexHttpBinding"
contract="IMetadataExchange"
name="MexHtppBinding"/>

<endpoint
address="mex"
binding="mexTcpBinding"
contract="IMetadataExchange"
name="MexTCPBinding"/>
<host>

<baseAddresses>
<add baseAddress=

"http://localhost:8001/AddMaster/" />
<add baseAddress=

"net.tcp://localhost:8002/AddMaster/" />
</baseAddresses>

</host>
</service>

</services>
<behaviors>

<serviceBehaviors>
<behavior name="AddMaster.ServiceBehavior">

<serviceMetadata httpGetEnabled="True" httpGetUrl=

6-26

Windows® Communications Foundation (WCF)™-Based Components

"http://localhost:8001/AddMaster/mex" />
<!-- To receive exception details in faults for
<!-- debugging purposes,
set the value below to true. Set to false before
deployment to avoid disclosing exception
information -->
<serviceDebug includeExceptionDetailInFaults="True" />

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

</configuration>

Compile the Server Program
Compile the server program using Microsoft Visual Studio by doing the
following:

1 Create a Microsoft Visual Studio project named AddMaster.

2 Add AddMasterServer.cs and App.config (the configuration file created
in the previous step) to your project.

3 Add references in the project to the following files.

This reference: Defines:

IAddOne.dll The .NET native type interface IAddOne

MechanismIAddOne.dll The generated type-safe API

AddOneCompNative.dll The MATLAB Builder NE component

Note Unlike other .NET deployment scenarios, you do not need to
reference MWArray.dll in the server program source code. The MWArray
data types are hidden behind the type-safe API in MechanismIAddOne.

4 If you are not already referencing System.ServiceModel, add it to your
Visual Studio project.

6-27

6 Type-Safe Interfaces, WCF, and MEF

5 Compile the program with Microsoft Visual Studio.

Run the Server Program
Run the server program from a command line.

The output should look similar to the following.

AddMaster Server is up running......
Press any key to close the service.

Pressing a key results in the following.

Closing service....

Generate Proxy Code for Clients
Configure your clients to communicate with the server by running the
automatic proxy generation tool, svcutil.exe. Most versions of Microsoft
Visual Studio can automatically generate client proxy code from server
metadata.

Caution Before you generate your client proxy code using this step, the
server must be available and running. Otherwise, the client will not find
the server.

1 Create a client project in Microsoft Visual Studio.

2 Add references by using either of these two methods. See “Port
Reservations and Using localhost 8001” on page 6-29 for information about
modifying port configurations.

6-28

Windows® Communications Foundation (WCF)™-Based Components

Method 1 Method 2

1 In the Solutions Explorer pane,
right-click References.

2 Select Add Service Reference.
The Add Service Reference
dialog box appears.

3 In the Address field, enter:
http://localhost:8001/
AddMaster/

Note Be sure to include the /
following AddMaster.

4 In the Namespace field, enter
AddMasterClient.

5 Click OK.

1 Enter the following command
from your client application
directory to generate
AddMasterProxy.cs, which
contains client proxy code.
This command also generates
configuration file App.config.
svcutil.exe /t:code
http://localhost:8001
/AddMaster/
/out:AddMasterProxy.cs
/config:App.config

Note Enter the above command
on one line, without breaks.

2 Add AddMasterProxy.cs and
App.config to your client project

Port Reservations and Using localhost 8001. When running a
self-hosted application, you may encounter issues with port reservations. Use
one of the tools below to modify your port configurations, as necessary.

if You Run.... Use This Tool to Modify Port
Configurations....

Windows XP httpcfg

Windows Vista™ netsh

Windows 7 netsh

Compile the Client Program
The client program differs from the AddMaster.cs server program as follows:

6-29

6 Type-Safe Interfaces, WCF, and MEF

• At start-up, this program connects to the AddMasterService provided by
the AddMaster WCF service.

• Instead of directly invoking the methods of the type-safe mechanism
IAddOne interface, the WCF client uses the method names defined in the
OperationContract attributes of IAddOne.

Compile the client program by doing the following:

1 Add the client code (AddMasterClient.cs) to your Microsoft Visual Studio
project.

2 If you are not already referencing System.ServiceModel, add it to your
Visual Studio project.

3 Compile the WCF client program in Visual Studio.

WCF Client Program

using System;
using System.Text;
using System.ServiceModel;

namespace AddMasterClient
{

class AddMasterClient
{

static void Main(string[] args)
{

try
{

// Connect to AddMaster Service
Console.WriteLine("Conntecting to

AddMaster Service through
Http connection...");

AddOneClient AddMaster =
new AddOneClient("HttpBinding");

Console.WriteLine("Conntected to
AddMaster Service...");

// Output as return value

6-30

Windows® Communications Foundation (WCF)™-Based Components

int one = 1;
int two = AddMaster.addOne_1(one);
Console.WriteLine("addOne({0}) = {1}",

one, two);

// Output: first parameter
int i16 = 16;
int o17 = 0;
AddMaster.addOne_2(ref o17, i16);
Console.WriteLine("addOne({0}) = {1}",

i16, o17);

// Output: second parameter
int three = 0;
AddMaster.addOne_3(two, ref three);
Console.WriteLine("addOne({0}) = {1}",

two, three);

// Scalar doubles
System.Double i495 = 495.0;
System.Double third =

AddMaster.addOne_4(i495);
Console.WriteLine("addOne({0}) = {1}",

i495, third);

// Vector addition
System.Double[] i = { 30, 60, 88 };
System.Double[] o = AddMaster.addOne_5(i);
Console.WriteLine(

"addOne([{0} {1} {2}]) = [{3} {4} {5}]",
i[0], i[1], i[2], o[0], o[1], o[2]);

}
catch (Exception ex)
{

Console.WriteLine(ex.Message);
}

Console.WriteLine("Press any key to close
the client application.");

Console.ReadLine();

6-31

6 Type-Safe Interfaces, WCF, and MEF

Console.WriteLine("Closing client...");
}

}
}

Run the Client Program
Run the client program from a command line.

The output should be similar to the following:

Conntecting to AddMaster Service through Http connection...
Conntected to AddMaster Service...
addOne(1) = 2
addOne(16) = 17
addOne(2) = 3
addOne(495) = 496
addOne([30 60 88]) = [31 61 89]
addOne([0 2; 3 1]) = [1 3; 4 2]
Press any key to close the client application.

Pressing a key results in the following.

Closing client....

6-32

Managed Extensibility Framework (MEF) Plug-Ins

Managed Extensibility Framework (MEF) Plug-Ins

In this section...

“What Is MEF?” on page 6-33

“MEF Prerequisites” on page 6-34

“Addition and Multiplication Applications with MEF” on page 6-35

What Is MEF?

.NET Developer

Role Knowledge Base Responsibilities

.NET
Developer

• Little to no MATLAB
experience

• Moderate IT experience

• .NET expert

• Minimal access to IT
systems

• Integrates deployed
component with the rest
of the .NET application

The Managed Extensibility Framework (MEF) is a library for creating
lightweight, extensible applications.

Why Use MEF?
When working with .NET applications, it is typically necessary to specify
which .NET components should be loaded.

Keeping the application updated with hard-coded names and locations of
.NET components rapidly becomes a maintenance issue, especially if the
updating is to be done by an end user who may not be familiar with the
technical aspects of the application.

MEF allows you to create a plug-in framework for your application or use
an existing framework with no required preconfiguration. It lets you avoid

6-33

6 Type-Safe Interfaces, WCF, and MEF

hard-coded dependencies and reuse extensions within and across applications.
Using MEF lets you avoid recompiling applications, such as Microsoft
Silverlight™, for which source code is generally unavailable.

How Does MEF Work?
MEF provides a way for .NET components to be automatically discovered. It
does this by using MEF components called parts. Parts declaratively specify
dependencies (imports) and capabilities (exports) through metadata.

An MEF application consists of a host program that invokes functions defined
in MEF parts. MEF Parts that implement the same interface export functions
with identical names. These parts all participate in a common framework.

Each part implements an interface; often times, many parts implement the
same interface. Parts that implement the same interface export functions with
identical names that can be used over a variety of applications. MEF parts
that implement the same interface must have descriptive, unique metadata.

The MEF host examines each part’s metadata to determine which to load
and invoke.

MEF parts are similar to MATLAB MEX files—each MEX file dynamically
extends MATLAB just as parts dynamically extend .NET components.

For More information About MEF
For up-to-date information regarding MEF, refer to the MSDN article
“Managed Extensibility Framework.”

MEF Prerequisites
Before running this example, keep the following in mind:

• You must be running Microsoft Visual Studio 2010 to create MEF
applications. If you can’t use Visual Studio 2010, you can’t run this
example code, or any other program that uses MEF. End Users do not need
Microsoft Visual Studio 2010 to run applications using MEF.

• You must be running at least Microsoft .NET Framework 4.0 to use the
MEF feature.

6-34

http://msdn.microsoft.com/en-us/library/dd460648.aspx

Managed Extensibility Framework (MEF) Plug-Ins

• If you want to use MEF, the easiest way to do so is through the type-safe
API. Therefore, you should be familiar with the “Type-Safe Interface
Generation and Implementation” on page 6-2 section before attempting to
run the MEF example.

Addition and Multiplication Applications with MEF
This MEF example application consists of an MEF host and two parts. The
parts implement a very simple interface (ICompute) which defines three
overloads of a single function (compute).

Each part performs simple arithmetic. In one part, the compute function adds
one (1) to its input. In the other part, compute multiplies its input by two (2).
The MEF host loads both parts and calls their compute functions twice.

To run this example, you’ll create a new solution containing three projects:

• MEF host

• Contract interface assembly

• Strongly-typed metadata attribute assembly

Implementing MEF requires the expertise of a .NET Developer (see
description of .NET Developer on page 8-21) because it requires performing a
number of advanced programming tasks.

Where To Find Example Code for MEF

Selected example code can be found, along with some Microsoft Visual Studio
projects, in matlabroot\toolbox\dotnetbuilder\Examples\VS10\NET.
This code has been tested to be compliant with Microsoft Visual Studio 2010
running on Microsoft .NET Framework version 4.0 or higher.

To deploy an MEF-based component, follow this general workflow:

1 “Create an MEFHost Assembly” on page 6-37

2 “Create a Contract Interface Assembly” on page 6-39

3 “Create a Metadata Attribute Assembly” on page 6-40

6-35

6 Type-Safe Interfaces, WCF, and MEF

4 “Add Contract and Attributes References to MEFHost” on page 6-41

5 “Compile Your Code in Microsoft® Visual Studio®” on page 6-41

6 “Write MATLAB Functions for MEF Parts” on page 6-41

7 “Create Metadata Files” on page 6-43

8 “Build .NET Components from MATLAB Functions and Metadata” on page
6-43

9 “Install MEF Parts” on page 6-45

10 “Run the MEF Host Program” on page 6-46

6-36

Managed Extensibility Framework (MEF) Plug-Ins

Create an MEFHost Assembly

1 Start Microsoft Visual Studio 2010.

2 Click File > New > Project.

3 In the Installed Templates pane, click Visual C# to filter the list of
available templates.

4 Select the Console Application template from the list.

5 In the Name field, enter MEFHost.

6 Click OK. Your project is created.

7 Replace the contents of the default Program.cs with the MEFHost.cs code.
For information about locating example code, see “Where to Find Example
Code,” above.

8 In the Solution Explorer pane, select the project MEFHost and
right-click. Select Add Reference.

9 Navigate to the .NET tab and add a reference to
System.ComponentModel.Composition.

10 To prevent security errors, particularly if you have a non-local installation
of MATLAB, add an application configuration file to the project. This XML
file instructs the MEF host to trust assemblies loaded from the network.
If your project does not include this configuration file, your application
fails at runtime.

a Select the MEFHost project in the Solution Explorer pane and
right-click.

b Click Add > New Item.

c From the list of available items, select Application Configuration
File.

d Click Add. The configuration file is added to your project. Visual Studio
automatically names the file App.config.

e Replace the automatically-generated contents of App.config with this
configuration:

6-37

6 Type-Safe Interfaces, WCF, and MEF

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<runtime>
<loadFromRemoteSources enabled="true" />

</runtime>
</configuration>

You have finished building the first project, which builds the MEF host.

Next, you add a C# class library project for the MEF contract interface
assembly.

6-38

Managed Extensibility Framework (MEF) Plug-Ins

Create a Contract Interface Assembly

1 in Visual Studio, click File > New > Project.

2 In the Installed Templates pane, click Visual C# to filter the list of
available templates.

3 Select the Class Library template from the list.

4 In the Name field, enter Contract.

Note Ensure Add to solution is selected in the Solution drop-down box.

5 Click OK. Your project is created.

6 Replace the contents of the default Class1.cs with the following ICompute
interface code:

namespace Contract
{

public interface ICompute
{

double compute(double y);
double[] compute(double[] y);
double[,] compute(double[,] y);

}
}

You have finished building the second project, which builds the Contract
Interface Assembly.

Since strongly-typed metadata requires that you decorate MEF parts with a
custom metadata attribute, in the next step you add a C# class library project.
This project builds an attribute assembly to your MEFHost solution.

6-39

6 Type-Safe Interfaces, WCF, and MEF

Create a Metadata Attribute Assembly

1 in Visual Studio, click File > New > Project.

2 In the Installed Templates pane, click Visual C# to filter the list of
available templates.

3 Select the Class Library template from the list.

4 In the Name field, enter Attribute.

Note Ensure Add to solution is selected in the Solution drop-down box.

5 Click OK. Your project is created.

6 In the generated assembly code, change the namespace from Attribute to
MEFHost. Your namespace code should now look like the following:

7 In the MEFHost namespace, replace the contents of the default class
Class1.cs with the following code for the ComputationTypeAttribute
class:

using System.ComponentModel.Composition;
[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class, AllowMultiple=false)]
public class ComputationTypeAttribute: ExportAttribute
{

public ComputationTypeAttribute() :
base(typeof(Contract.ICompute)) { }

public Operation FunctionType{ get; set; }

6-40

Managed Extensibility Framework (MEF) Plug-Ins

public double Operand { get; set; }
}

public enum Operation
{

Plus,
Times

}

8 Navigate to the .NET tab and add a reference to
System.ComponentModel.Composition.dll.

Add Contract and Attributes References to MEFHost
Before compiling your code in Microsoft Visual Studio:

1 In yourMEFHost project, add references to the Contract and Attribute
projects.

2 In your Attribute project, add a reference to the Contract project.

Compile Your Code in Microsoft Visual Studio
Build all your code by selecting the solution nameMEFHost in the Solution
Explorer pane, right-clicking, and selecting Build Solution.

In doing so, you create the following binaries in MEFHost/bin/Debug:

• Attribute.dll

• Contract.dll

• MEFHost.exe

Write MATLAB Functions for MEF Parts
Create two MATLAB functions. Each must be named compute and stored in
separate folders, within your Microsoft Visual Studio project:

MEFHost/Multiply/compute.m

function y = compute(x)

6-41

6 Type-Safe Interfaces, WCF, and MEF

y = x * 2;

MEFHost/Add/compute.m

function y = compute(x)
y = x + 1;

6-42

Managed Extensibility Framework (MEF) Plug-Ins

Create Metadata Files
Create a metadata file for each MATLAB function.

1 For MEFHost/Add/compute.m:

a Name the metadata file MEFHost/Add/Add.metadata.

b In this file, enter the following metadata on one line:

[MEFHost.ComputationType(FunctionType=MEFHost.Operation.Plus, Operand=1)]

2 For MEFHost/Multiply/compute.m:

a Name the metadata file MEFHost/Multiply/Multiply.metadata.

b In this file, enter the following metadata on one line:

[MEFHost.ComputationType(FunctionType=MEFHost.Operation.Times, Operand=2)]

Build .NET Components from MATLAB Functions and Metadata
In this step, use Deployment Tool to create .NET components from the
MATLAB functions and associated metadata.

Use the information in these tables to create both Addition and
Multiplication projects.

Note Since you are deploying two functions, you need to run the Deployment
Tool twice, once using the Addition.prj information and once using the
following Multiplication.prj information.

Addition.prj

Project Name Addition

Class Name Add

File to compile MEFHost/Add/compute.m

6-43

6 Type-Safe Interfaces, WCF, and MEF

Multiplication.prj

Project Name Multiplication

Class Name Multiply

File to compile MEFHost/Multiply/compute.m

1 Type deploytool at the MATLAB command prompt, and press Enter. The
Deployment Project dialog box opens.

The Deployment Project Dialog Box

2 Create a deployment project using the Deployment Project dialog box:

a Type the name of your project in the Name field.

b Enter the location of the project in the Location field. Alternately,
navigate to the location.

c Select the target for the deployment project from the Type drop-down
menu.

d Click OK.

3 On the Build tab:

• If you are building a .NET application, click Add class. Type the name
of the class in the Class Name field, designated by the letter c:

6-44

Managed Extensibility Framework (MEF) Plug-Ins

For this class, add methods you want to compile by clicking Add files.
To add another class, click Add class.

• You may optionally add supporting files. For examples of these files,
see the deploytool Help. To add these files, in the Shared Resources
and Helper Files area:

e Click Add files/directories

f Click Open to select the file or files.

4 Modify project settings (> Settings) on the Type Safe API tab, for
whatever project you are building (Addition or Multiplication).

Project
Setting

Addition.prj Multiplication.prj

Enable Type
Safe API

Checked Checked

Interface
Assembly

MEFHost/bin/Debug/Contract.dll MEFHost/bin/Debug/Contract.dll

MEF
metadata

MEFHost/Add/Add.metadata MEFHost/Multiply/Multiply.metadata

Attribute
Assembly

MEFHost/bin/Debug/Attribute.dll MEFHost/bin/Debug/Attribute.dll

Wrapped
Class

Add Multiply

5 Click the Build button ().

Install MEF Parts
The two components you have built are MEF parts. You now need to move the
generated parts into the catalog directory so your application can find them:

1 Create a parts folder named MEFHost/Parts.

2 If necessary, modify the path argument that is passed to the
DirectoryCatalog constructor in your MEF host program. It must match
the full path to the Parts folder that you just created.

6-45

6 Type-Safe Interfaces, WCF, and MEF

Note If you change the path after building the MEF host a first time, you
must rebuild the MEF host again to pick up the new Parts path.

3 Copy the two componentNative.dlls (Addition and Multiplication)
and AddICompute.dll and MultiplyICompute.dll assemblies from your
MATLAB Builder NE distrib folder into MEFHost/Parts.

Note You do not need to reference any of your MEF part assemblies in the
MEF host program. The host program uses a DirectoryCatalog, which
means it automatically searches for (and loads) parts that it finds in the
specified folder. You can add parts at any time, without having to recompile
or relink the MEF host application. You do not need to copy Addition.dll
or Multiplication.dll to the Parts directory.

Run the MEF Host Program
MATLAB-based MEF parts require the MCR, like all components generated
by the MATLAB deployment tools.

Before you run your MEF host, ensure that the correct version of the MCR is
available and that matlabroot/runtime/arch is on your path.

1 From a DOS command window, run the following. This example assumes
you are running from c:\Work.

c:\Work> MEFHost\bin\Debug\MEFHost.exe

2 Verify you receive the following output:

8 Plus 1 = 9
9 Times 2 = 18
16 Plus 1 = 17
1.5707963267949 Times 2 = 3.14159265358979

6-46

Managed Extensibility Framework (MEF) Plug-Ins

Troubleshooting the MEF Host Program.

Do you receive an exception indicating that a type initializer failed?

Ensure that you:

• Have matlabroot/runtime/arch defined to your MATLAB path.

• Have .NET security permissions set to allow applications to load assemblies
from a network.

• Rebuilt MEFHost after adding the application configuration file.

Do you receive an exception indicating that MWArray.dll cannot be
loaded commonly?

Ensure that you:

• Installed MWArray.dll in the Global Assembly Cache (GAC).

• Match the bit-depth of MWArray.dll to the bit depth of your MEF host
application.

Often the default architecture for a C# console application is 32 bits. If
you’ve installed the 64-bit version of MWArray.dll into the GAC, you’ll get
this error. The easiest correction for this error is to change your console
application to 64-bit. To do this in Microsoft Visual Studio, set Properties
> Build > Platform Target to x64.

Do you receive an exception that a particular version of mclmcrrt
cannot load?

Ensure that you:

• Do not have more than one instance of MATLAB on your path or installed
on your system.

• Have the correct version of MWArray.dll installed in the Global Assembly
Cache (GAC).

6-47

6 Type-Safe Interfaces, WCF, and MEF

6-48

7

Web Deployment of Figures
and Images

• “WebFigures” on page 7-2

• “Creating and Modifying a MATLAB Figure” on page 7-32

• “Working with MATLAB Figure and Image Data” on page 7-35

7 Web Deployment of Figures and Images

WebFigures

In this section...

“Supported Renderers for WebFigures” on page 7-2

“WebFigures Prerequisites” on page 7-3

“Quick Start Implementation of WebFigures” on page 7-6

“Advanced Configuration of a WebFigure” on page 7-13

“Upgrading Your WebFigures” on page 7-29

“Troubleshooting” on page 7-29

“Logging Levels” on page 7-31

Using the WebFigures feature in MATLAB Builder NE you can display
MATLAB figures on a Web site for graphical manipulation by end users.
This enables them to use their graphical applications from anywhere on the
Web without the need to download MATLAB or other tools that can consume
costly resources.

This chapter includes “Quick Start Implementation of WebFigures” on
page 7-6, which guides you through implementing the basic features of
WebFigures, and an advanced section to let you customize your configuration
depending on differing server architectures.

Supported Renderers for WebFigures
The MATLAB Builder NE WebFigures feature uses the same renderer used
when the figure was originally created by default.

In MATLAB, the renderer is either explicitly specified for
a figure or determined by the data being plotted. For
more information about supported renderers in MATLAB, see
http://www.mathworks.com/support/tech-notes/1200/1201.html.

7-2

http://www.mathworks.com/support/tech-notes/1200/1201.html

WebFigures

Note The WebFigures feature does not support the Painter renderer due to
technical limitations. If this renderer is requested, the renderer Zbuffer will
be invoked before the data is displayed on the Web page.

WebFigures Prerequisites

• “Your Role in the .NET WebFigure Deployment Process” on page 7-3

• “What You Need to Know to Implement WebFigures” on page 7-5

• “Required Products” on page 7-5

• “Assumptions About the Examples” on page 7-6

Your Role in the .NET WebFigure Deployment Process
Depending on your role in your organization, as well as a number of other
criteria, you may need to implement either the beginning or the advanced
configuration of WebFigures.

The table WebFigures for .NET Deployment Roles, Responsibilities, and
Tasks on page 7-3 describes some of the different roles, or jobs, that MATLAB
Builder NE users typically perform and which method of configuration
they would most likely use when running “Quick Start Implementation of
WebFigures” on page 7-6 and “Advanced Configuration of a WebFigure” on
page 7-13.

WebFigures for .NET Deployment Roles, Responsibilities, and Tasks

Role Typical Responsibilities Tasks

MATLAB programmer • Understand end-user
business requirements and
the mathematical models
needed to support them.

• Write MATLAB code.

• Build an executable
component with MATLAB

• Write and deploy MATLAB
code, such as that in
“Assumptions About the
Examples” on page 7-6.

7-3

7 Web Deployment of Figures and Images

WebFigures for .NET Deployment Roles, Responsibilities, and Tasks (Continued)

Role Typical Responsibilities Tasks

tools (usually with support
from a .NET programmer).

• Package the component for
distribution to end users.

.NET programmer
(business-service developer or
front-end developer)

• Design and configure the IT
environment, architecture,
or infrastructure.

• Install deployable
applications along with
the proper version of the
MCR.

• Create mechanisms for
exposing application
functionality to the end
user.

• Uses “Quick Start
Implementation of
WebFigures” on page 7-6
to easily create a graphic,
such as a MATLAB figure,
that the end user can
manipulate over the Web.

• Use the “Advanced
Configuration of a
WebFigure” on page 7-13 to
create a flexible, scalable
implementation that can
meet a number of varied
architectural requirements.

7-4

WebFigures

What You Need to Know to Implement WebFigures
The following knowledge is assumed when you implement WebFigures for
.NET:

• If you are a MATLAB programmer:

- A basic knowledge of MATLAB

• If you are a .NET programmer:

- Knowledge of how to build a Web site using Microsoft Visual Studio.

- Experience deploying MATLAB applications

Required Products
Install the following products to implement WebFigures for .NET, depending
on your role.

MATLAB Programmer .NET Programmer

MATLAB R2008b or later Microsoft Visual Studio 2005 or later

MATLAB Compiler Microsoft .NET Framework 2.0 or
later

MATLAB Builder NE MATLAB Compiler Runtime version
7.9 or later

7-5

7 Web Deployment of Figures and Images

Assumptions About the Examples
To work with the examples in this chapter:

• Assume the following MATLAB function has been created:

function df = getKnot()
f = figure('Visible','off'); %Create a figure.

%Make sure it isn't visible.
knot; %Put something into the figure.
df = webfigure(f); %Give the figure to your function

% and return the result.
close(f); %Close the figure.

end

• Assume that the function getKnot has been deployed in a .NET component
(using Chapter 1, “Getting Started” for example) with a namespace of
MyComponent.MyComponentclass.

• Assume the MATLAB Compiler Runtime (MCR) has been installed. If not,
refer to “Distribute MATLAB Code Using the MATLAB Compiler Runtime
(MCR)” in the MATLAB Compiler documentation.

• If you are running on a system with 64-bit architecture, use the information
in “Advanced Configuration of a WebFigure” on page 7-13 to work with
WebFigures unless you are deploying a Web site which is 32-bit only and
you have a 32-bit MCR installed.

Quick Start Implementation of WebFigures

• “Overview” on page 7-6

• “Procedure” on page 7-7

Overview
Using Quick Start, both the WebFigure service and the page that has the
WebFigure embedded on it reside on a single server. This configuration
enables you to quickly drag and drop the WebFigureControl on a Web page.

7-6

WebFigures

Procedure
To implement WebFigures for MATLAB Builder NE using the Quick Start
approach, do the following. For more information about the Quick Start
option, see “WebFigures” on page 7-2.

1 Start Microsoft Visual Studio.

2 Select File > New > Web Site to open.

3 Select one of the template options and click OK.

Caution Do not select Empty Web Site as it is not possible to create a
WebFigure using this option.

4 Add WebFigureControl to the Microsoft Visual Studio toolbar by dragging
the file InstallRoot\toolbox\dotnetbuilder\bin\arch\v2.0\
WebFiguresService.dll, (where InstallRoot is the location of the
installed MCR for machines with an installed MCR and matlabroot on a
MATLAB Builder NE development machine without the MCR installed),
on to the Microsoft Visual Studio Toolbox toolbar as follows:

7-7

7 Web Deployment of Figures and Images

Note If you are running on a system with 64-bit architecture, use the
information in “Advanced Configuration of a WebFigure” on page 7-13 to
work with WebFigures unless you are deploying a Web site which is 32-bit
only and you have a 32-bit MCR installed.

a Expand the General section of the Toolbox toolbar.

b Using your mouse, drag the DLL file to the expanded section, as shown
by the arrow:

If you added the control correctly, you will see the following
WebFigureControl in the General section of the Microsoft Visual Studio
toolbar:

5 Drag the WebFigureControl from the toolbar to your Web page. After
dragging, the Web page displays the following default figure.

7-8

WebFigures

You can resize the control as you would any other .NET Web control.

6 Switch to the Design view in Microsoft Visual Studio by selecting View
> Designer.

7 Test the Web page by “playing” it in Microsoft Visual Studio. Select Debug
> Start Debugging. The page should appear as follows.

7-9

7 Web Deployment of Figures and Images

8 Interact with the default figure on the page using your mouse. Click one
of the three control icons at the top of the figure to activate the desired
control, select the desired region of the figure you want to manipulate, then
click and drag as appropriate. For example, to zoom in on the figure, click
the magnifying glass icon, then hover over the figure.

9 Close the page as you would any other window, automatically exiting
debug or “play” mode.

10 The WebFigureService you created has been verified as functioning
properly and you can attach a custom WebFigure to the Web page:

7-10

WebFigures

a To enable return of the webfigure and to bind it to the webfigure
control, add a reference to MWArray to your project and a reference to
the deployed component you created earlier (in “Assumptions About
the Examples” on page 7-6). See Chapter 4, “Component Integration”
for more information.

b In Microsoft Visual Studio, access the code for the Web page by selecting
View > Code.

c In Microsoft Visual Studio, go to the Page_Load method, and add this
code, depending on if you are using the C# or Visual Basic language.
Adding code to the Page_Load method ensures it executes every time
the Web page loads.

Note The following code snippets belong to the partial classes generated
by your .NET Web page.

• C#:

using MyComponent;

using MathWorks.MATLAB.NET.WebFigures;

protected void Page_Load(object sender, EventArgs e)

{

MyComponentclass myDeployedComponent =

new MyComponentclass();

WebFigureControl1.WebFigure =

new WebFigure(myDeployedComponent.getKnot());

}

• Visual Basic:

Imports MyComponent

Imports MathWorks.MATLAB.NET.WebFigures

Protected Sub Page_Load(ByVal sender As Object,

ByVal e As System.EventArgs)

Handles Me.Load

Dim myDeployedComponent As _

7-11

7 Web Deployment of Figures and Images

New MyComponentclass()

WebFigureControl1.WebFigure = _

New WebFigure(myDeployedComponent.getKnot())

End Sub

Tip This code causes the deployed component to be reinitialized upon
each refresh of the page. A better implementation would involve
initializing the myDeployedComponent variable when the server starts
up using a Global.asax file, and then using that variable to get the
WebFigure object. For more information on Global.asax, see “Using
Global Assembly Cache (Global.asax) to Create WebFigures at Server
Start-Up” on page 7-27.

Note WebFigureControl stores the WebFigure object in the IIS session
cache for each individual user. If this is not the desired configuration, see
“Advanced Configuration of a WebFigure” on page 7-13 for information
on creating a custom configuration.

11 Replay the Web page in Microsoft Visual Studio to confirm your WebFigure
appears as desired. It should look like this.

7-12

WebFigures

Advanced Configuration of a WebFigure

• “Overview” on page 7-14

• “Manually Installing WebFigureService” on page 7-16

• “Retrieving Multiple WebFigures From a Component” on page 7-18

• “Attaching a WebFigure” on page 7-21

• “Setting Up WebFigureControl for Remote Invocation” on page 7-23

• “Getting an Embeddable String That References a WebFigure Attached to
a WebFigureService” on page 7-24

7-13

7 Web Deployment of Figures and Images

• “Improving Processing Times for JavaScript Using Minification” on page
7-27

• “Using Global Assembly Cache (Global.asax) to Create WebFigures at
Server Start-Up” on page 7-27

Overview
The advanced configuration gives the experienced .NET programmer (possibly
a business service developer or front-end developer) flexibility and control
in configuring system architecture based on differing needs. For example,
with the WebFigureService and the Web page on different servers, the
administrator can optimally position the MCR (for performance reasons) or
place customer-sensitive customer data behind a security firewall, if needed.

In summary, the advanced configuration offers more choices and adaptability
for the user more familiar with Web environments and related technology, as
illustrated by the following graphics.

This section describes various ways to customize the basic WebFigures
implementation described in “Quick Start Implementation of WebFigures”
on page 7-6.

7-14

WebFigures

7-15

7 Web Deployment of Figures and Images

Manually Installing WebFigureService
WebFigureService is essentially a set of HTTP handlers that can service
requests sent to an instance of Internet Information Service (IIS). There are
occasions when you may want to manually install WebFigureService. For
example:

• You want to implement the WebFigure controls programmatically and
provide more detailed customization.

• Your Web environment was reconfigured from when you initially ran the
“Quick Start Implementation of WebFigures” on page 7-6.

7-16

WebFigures

• You want to implement WebFigures in a multiple server environment,
as depicted in the previous graphic.

• You want to understand more about how WebFigures for .NET works.

When you dragged the GUI control for WebFigures onto the Web page in
“Quick Start Implementation of WebFigures” on page 7-6, you automatically
installed WebFigureService in the Web application file web.config.

To install this manually:

1 Add a reference to WebFiguresService.dll from the folder
InstallRoot\toolbox\dotnetbuilder\bin\arch\v2.0 to the project,
(where InstallRoot is the location of the installed MCR for machines with
an installed MCR and matlabroot on a MATLAB Builder NE development
machine without the MCR installed).

2 Add the following code to web.config. This code tells IIS to send
any requests that come to the __WebFigures.ashx file to the
WebFigureHttpHandlerFactory in the WebFiguresService.dll:

For Versions of IIS Before 7.0

<httpHandlers>
<add path="__WebFigures.ashx"

verb="GET"
type="MathWorks.MATLAB.NET.WebFigures.

Service.Handlers.Factories.
Http.WebFigureHttpHandlerFactory"

validate="false" />
</httpHandlers>

For IIS 7.0

<system.webServer>

<handlers>

<add name="WebFigures" path="__WebFigures.ashx"

verb="GET"

type="MathWorks.MATLAB.NET.WebFigures.

Service.Handlers.Factories.

Http.WebFigureHttpHandlerFactory"/>

7-17

7 Web Deployment of Figures and Images

</handlers>

</system.webServer>

Note The value for the type= statement in the above code must be entered
on one continuous line even though it is not represented as such in the
documentation.

Retrieving Multiple WebFigures From a Component
If your deployed component returns several WebFigures, then you have to
make additional modifications to your code.

MATLAB sees a WebFigure the same way it see a MWStructArray. WebFigure
constructors accept a WebFigure, an MWArray, or an MWStructArray as inputs.

Use the following examples as guides, depending on what type of functions
you are working with.

Working with Functions that Return a Single WebFigure as the
Function’s Only Output.

C#

using MyComponent;
using MathWorks.MATLAB.NET.WebFigures;

public class
{

protected void Page_Load(object sender, EventArgs e)
{

MyComponentclass myDeployedComponent =
new MyComponentclass();

WebFigureControl1.WebFigure =
new WebFigure(myDeployedComponent.getKnot());

}
}

7-18

WebFigures

Visual Basic

Imports MyComponent
Imports MathWorks.MATLAB.NET.WebFigures

Class
Protected Sub Page_Load(ByVal sender As Object,

ByVal e As System.EventArgs)
Handles Me.Load

Dim myDeployedComponent As _
New MyComponentclass()

WebFigureControl1.WebFigure = _
New WebFigure(myDeployedComponent.getKnot())

End Sub
End Class

Working With Functions That Return Multiple WebFigures In an Array
as the Output.

C#

using MyComponent;
using MathWorks.MATLAB.NET.WebFigures;

public class
{

protected void Page_Load(object sender, EventArgs e)
{

MyComponentclass myDeployedComponent =
new MyComponentclass();

//If the function returns an array with 4 WebFigures
// in it and takes in no inputs.
MWArray[] outputs = myDeployedComponent.getKnot(4);

WebFigureControl1.WebFigure =
new WebFigure(outputs[0]);

WebFigureControl2.WebFigure =

7-19

7 Web Deployment of Figures and Images

new WebFigure(outputs[1]);

WebFigureControl3.WebFigure =
new WebFigure(outputs[2]);

WebFigureControl4.WebFigure =
new WebFigure(outputs[3]);

}
}

Visual Basic

Imports MyComponent
Imports MathWorks.MATLAB.NET.WebFigures

Class
Protected Sub Page_Load(ByVal sender As Object,

ByVal e As System.EventArgs)
Handles Me.Load

Dim myDeployedComponent As _
New MyComponentclass()

Dim outputs as MWArray() = _
myDeployedComponent.getKnot(4)

WebFigureControl1.WebFigure = _
New WebFigure(outputs(0))

WebFigureControl2.WebFigure = _
New WebFigure(outputs(1))

WebFigureControl3.WebFigure = _
New WebFigure(outputs(2))

WebFigureControl4.WebFigure = _
New WebFigure(outputs(3))

End Sub
End Class

7-20

WebFigures

Attaching a WebFigure
After you have manually installed WebFigureService, the server where it
is installed is ready to receive requests for any WebFigure information. In
the Quick Start, WebFigureService uses the session cache built into IIS to
retrieve a WebFigure, per user, and display it. Since a WebFigureControl isn’t
being used in this case, you need to manually set up the WebFigureService
and attach the WebFigure. Add the code supplied in this section to attach a
WebFigure of your choosing.

This method of setting up WebFigureService and attaching the figure
manually is very useful in the following situations:

• You do not want front-end servers to have WebFigureService running
on them for performance reasons.

• You are displaying a WebFigure that does not change based on the current
user or session. When multiple users are sharing the same WebFigure,
which is very common, it is much more efficient to store a single WebFigure
in the Application or Cache state, rather than issuing all users their
own figure.

There are a number of ways to attach a WebFigure to a scope, depending on
state (note that these terms follow standard industry definitions and usage):

State Definition

Session The method used by WebFigureControl by default, which is
tied to a specific user session and cannot be shared across
sessions. If you use IIS session sharing capabilities, you can
use this across servers in a cluster.

Application Available for any user of your application, per application
lifetime. IIS will not propagate this across servers in a
cluster, but if each server attaches the data to this cache
once, all users can access it very efficiently.

Cache Similar to Application, but with more potential settings.
You can assign “time to live” and other settings found in
Microsoft documentation.

7-21

7 Web Deployment of Figures and Images

Note In this type of configuration, it is typical to have the following code
executed once in the Global.asax server startup block. For more information
on Global.asax, see “Using Global Assembly Cache (Global.asax) to Create
WebFigures at Server Start-Up” on page 7-27.

Add the following code to manually attach the WebFigure, based on whether
you are using C# or Visual Basic:

• C#:

MyComponentclass myDeployedComponent =
new MyComponentclass();

Session["SessionStateWebFigure"] =
new WebFigure(myDeployedComponent.getKnot());

Or

Application["ApplicationStateWebFigure"] =
new WebFigure(myDeployedComponent.getKnot());

Or

Cache["CacheStateWebFigure"] =
new WebFigure(myDeployedComponent.getKnot());

• Visual Basic:

Dim myDeployedComponent As _
New MyComponentclass()

Session("SessionStateWebFigure") = _
New WebFigure(myDeployedComponent.getKnot())

Or

Application("ApplicationStateWebFigure") = _
New WebFigure(myDeployedComponent.getKnot())

7-22

WebFigures

Or

Cache("CacheStateWebFigure") = _
New WebFigure(myDeployedComponent.getKnot())

Setting Up WebFigureControl for Remote Invocation
After you drag a WebFigureControl onto a page, as in “Quick Start
Implementation of WebFigures” on page 7-6, you either assign the WebFigure
property or set the Remote Invocation properties, depending on how the
figure will be used.

The procedure in this section allows you to tell WebFigureControl to reference
a WebFigure that has been manually attached to a WebFigureService on a
remote server or cluster of remote servers. This allows you to use the custom
control, yet the resources of WebFigureService are running on a remote
server to maximize performance.

1 Drag a WebFigureControl from the toolbox onto the page, if you haven’t
done so already in “Quick Start Implementation of WebFigures” on page
7-6.

Note If you are running on a system with 64-bit architecture, use the
information in “Advanced Configuration of a WebFigure” on page 7-13 to
work with WebFigures unless you are deploying a Web site which is 32-bit
only and you have a 32-bit MCR installed.

2 In the Properties pane for this control, set the Name and Scope attributes
as follows:

• Name ApplicationStateWebFigure

• Scope application

7-23

7 Web Deployment of Figures and Images

Caution Always attempt to define the scope. If you leave Scope blank,
the Session state, the Application state, and then the Cache state (in
this order) will be checked. If there are WebFigures in any of these states
with the same name, there can be potential for conflict and confusion.
The first figure with the same name will be used by default.

The pane should now look like this:

Note If you don’t provide a root (usually the location of the load balancer),
it is assumed to be the server where the page is executing.

Getting an Embeddable String That References a WebFigure
Attached to a WebFigureService
From any server, you can use the GetHTMLEmbedString API to get a string
that can be embedded onto a page, if you followed the procedures “Manually

7-24

WebFigures

Installing WebFigureService” on page 7-16 in “Attaching a WebFigure” on
page 7-21.

To do so, use the following optional parameters and code snippets (or
something similar, depending on your implementation). For information on
the differences between session, application, and cache scopes, see “Attaching
a WebFigure” on page 7-21.

GetHTMLEmbedString API Parameters

Parameter If not specified...

ID Default MATLAB WebFigure (the MATLAB
membrane logo).

Root The relative path to the current Web page
will be used.

WebFigureAttachType Will search through Session state, then
Application state, then Cache state.

Height Default height will be 420.

Width Default width will be 560.

Referencing a WebFigure Attached to the Local Server.

• C#:

using MathWorks.MATLAB.NET.WebFigures.Service;

String localEmbedString =
WebFigureServiceUtility.GetHTMLEmbedString(

"SessionStateWebFigure",
WebFigureAttachType.session,
300,
300);

Response.Write(localEmbedString);

• Visual Basic:

Imports MathWorks.MATLAB.NET.WebFigures.Service

7-25

7 Web Deployment of Figures and Images

Dim localEmbedString As String = _
WebFigureServiceUtility.GetHTMLEmbedString(_

"SessionStateWebFigure", _
WebFigureAttachType.session, _
300, _
300)

Response.Write(localEmbedString)

Referencing a WebFigure Attached to a Remote Server.

• C#:

using MathWorks.MATLAB.NET.WebFigures.Service;

String remoteEmbedString =
WebFigureServiceUtility.GetHTMLEmbedString(

"SessionStateWebFigure",
"http://localhost:20309/WebSite7/",
WebFigureAttachType.session,
300,
300);

Response.Write(remoteEmbedString);

• Visual Basic:

Imports MathWorks.MATLAB.NET.WebFigures.Service

Dim localEmbedString As String = _
WebFigureServiceUtility.GetHTMLEmbedString(_

"SessionStateWebFigure", _
"http://localhost:20309/WebSite7/", _
WebFigureAttachType.session, _
300, _
300)

Response.Write(localEmbedString)

7-26

WebFigures

Improving Processing Times for JavaScript Using Minification
This application uses JavaScript to perform most of its AJAX functionality.
Because JavaScript runs in the client browser, it must all be streamed to the
client computer before it can execute. To improve this process, you use a
standard JavaScript minification algorithm to remove comments and white
space in the code. This feature is enabled by default. To disable it, create
an environment variable called mathworks.webfigures.disableJSMin and
set its value to true.

Using Global Assembly Cache (Global.asax) to Create
WebFigures at Server Start-Up
In ASP.NET there is a special type of object you can add called a Global
Assembly Cache, also known by the name Global.asax.

Global.asax classes have methods that are called at various times in the IIS
life cycle, such as Application_Start and Application_End. These methods
get called respectively when the server is first started and when the server is
being shut down.

As seen in “Quick Start Implementation of WebFigures” on page 7-6, the
default behavior for a WebFigureControl is to store data in the Session
cache on the server. In other words, each user that accesses a page using a
WebFigureControl has an individual instance of that WebFigure in the cache.
This is useful if each user gets specific data, but resources can be wasted in
situations where all users are accessing the same WebFigures.

Therefore, in order to maximize available resources, it makes sense to move
WebFigure code for commonly used figures into the Application_Start
method of the Global.asax. In the following example, code written in the
Web page initialization section of “Attaching a WebFigure” on page 7-21 is
moved into a Global.asax method as follows:

C#

void Application_Start(object sender, EventArgs e)
{

// Code that runs on application startup
MyComponentclass myDeployedComponent =

new MyComponentclass();

7-27

7 Web Deployment of Figures and Images

Application["ApplicationStateWebFigure"] =
new WebFigure(myDeployedComponent.getKnot());

//Or

Cache["CacheStateWebFigure"] =
new WebFigure(myDeployedComponent.getKnot());

}

Visual Basic

Sub Application_Start
(ByVal sender As Object, ByVal e As EventArgs)

' Code that runs on application startup
Dim myDeployedComponent As _

New MyComponentclass()

Application("ApplicationStateWebFigure") = _
New WebFigure(myDeployedComponent.getKnot())

'Or

Cache("CacheStateWebFigure") = _
New WebFigure(myDeployedComponent.getKnot())

End Sub

7-28

WebFigures

Note In this scenario, notice a WebFigure is not bound to the Session, since
you usually need to share the WebFigures across different sessions. However,
it may be useful to use the Cache option, since it provides a way to specify
Time To Live so the WebFigure can be regenerated and reattached at a
specific time interval.

Once the figure is attached to a cache, reference it either from the
WebFigureControl as seen in “Setting Up WebFigureControl for Remote
Invocation” on page 7-23 or directly from the Web page as in “Getting
an Embeddable String That References a WebFigure Attached to a
WebFigureService” on page 7-24.

Upgrading Your WebFigures
If you want to upgrade your version of MATLAB Builder NE and retain
WebFigures created with a prior product release, do the following:

1 Delete the WebFigureControl icon from the toolbox.

2 Delete any WebFigures from your page.

3 Upgrade your version of MATLAB Builder NE .

4 Add the new WebFigureControl icon to the toolbox.

5 Drag new WebFigures on to your page.

Troubleshooting
Use the following section to diagnose error conditions encountered when
implementing WebFigures for the .NET feature.

In WebFigures, there are two ways to display errors: by turning debug on for
the site, and by turning it off. When debug is turned on, some error messages
contain links to HTML pages that describe how the problem might be solved.
When it is turned off, only the error message is shown.

Common causes of errors include:

7-29

7 Web Deployment of Figures and Images

• MCR is not installed or is the wrong version (meaning MWArray.dll is the
wrong version or WebFigureService.dll is the wrong version).

• Deployed component is a different version than that compatible with the
MCR.

• Incorrect framework is being used (only .NET 2.0 Framework is supported
as of R2008b for WebFigures).

• WebFigureService is not installed. See “Manually Installing
WebFigureService” on page 7-16.

• WebFigure is not attached to WebFigureService. See “Attaching a
WebFigure” on page 7-21.

• Remote root URL is pointing to an invalid server.

Common errors and their diagnosis follow.

Error Diagnosis

Issue Displaying Image. Please
Refresh.

Most often, this message is generated
when the session state has expired
and the WebFigure has been
deleted. Refreshing the session will
reestablish the WebFigure in cache
and the figure will reappear.

No WebFigure Can Be Found with
the Name Specified

The WebFigure isn’t attached
correctly. See “Attaching a
WebFigure” on page 7-21.

WebFigureServiceHas Encountered
an Unrecoverable Error

A critical error has occurred but the
exact cause is unknown. Typically
this is due to some type of system
configuration issue that could not be
anticipated.

7-30

WebFigures

Error Diagnosis

WebFigureService Not Functioning The WebFigureService
httpHanderFactory could
not be found on the server
specified. See “Manually Installing
WebFigureService” on page 7-16.

Could not find a part of the path
pathname

The logging environment variable is
set to a folder that does not exist.

Logging Levels
There are several logging levels that can be used to diagnose problems with
WebFigures.

Logging Level Uses

Severe Unrecoverable errors and exceptions

Warning Recoverable errors that might occur

Information Informative messages

Finer For monitoring application flow (when different parts of
an application are executed)

You can manually set the log level by setting an environment variable called
mathworks.webfigures.logLevel to one of the above strings.

If you set this environment variable to something other than the above strings
or it is not set, it defaults to a level of Warning or Severe only.

By default, all exceptions are shown within the WebFigure control on the Web
page when debug mode is on for the site.

If you want more detailed logging information, or log information
when debug is not on, set an environment variable called
mathworks.webfigures.logLocation to the location where the log file is
written. The log file is named yourwebappnameWFSLog.txt.

7-31

7 Web Deployment of Figures and Images

Creating and Modifying a MATLAB Figure

In this section...

“Preparing a MATLAB Figure for Export” on page 7-32

“Changing the Figure (Optional)” on page 7-32

“Exporting the Figure” on page 7-33

“Cleaning Up the Figure Window” on page 7-33

“Modifying and Exporting Figure Data” on page 7-34

MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Uses tools to create a component that
is used by the .NET developer

Preparing a MATLAB Figure for Export

1 Create a figure window. For example:

h = figure;

2 Add graphics to the figure. For example:

surf(peaks);

Changing the Figure (Optional)
Optionally, you can change the figure numerous ways. For example:

Alter Visibility

set(h, 'Visible', 'off');

7-32

Creating and Modifying a MATLAB® Figure

Change Background Color

set(h, 'Color', [.8,.9,1]);

Alter Orientation and Size

width=500;
height=500;
rotation=30;
elevation=30;
set(h, 'Position', [0, 0, width, height]);
view([rotation, elevation]);

Exporting the Figure
Export the contents of the figure in one of two ways:

WebFigure
To export as a WebFigure:

returnFigure = webfigure(h);

Image Data
To export image data, for example:

imgform = 'png';
returnByteArray = figToImStream(`figHandle', h, ...

`imageFormat', imgForm, ...
`outputType', `uint8');

Cleaning Up the Figure Window
To close the figure window:

close(h);

7-33

7 Web Deployment of Figures and Images

Modifying and Exporting Figure Data

WebFigure
function returnFigure = getWebFigure()
h = figure;
set(h, 'Visible', 'off');
surf(peaks);
set(h, 'Color', [.8,.9,1]);
returnFigure = webfigure(h);
close(h);

Image Data
function returnByteArray = getImageDataOrientation(height,

width, elevation, rotation, imageFormat)
h = figure;
set(h, 'Visible', 'off');
surf(peaks);
set(h, 'Color', [.8,.9,1]);
set(h, 'Position', [0, 0, width, height]);
view([rotation, elevation]);
returnByteArray = figToImStream(`figHandle', h, ...

`imageFormat', imageFormat, ...
`outputType', `uint8');

close(h);

7-34

Working with MATLAB® Figure and Image Data

Working with MATLAB Figure and Image Data

In this section...

“For More Comprehensive Examples” on page 7-35

“Working with Figures” on page 7-35

“Working with Images” on page 7-36

Front-End Web Developer

Role Knowledge Base Responsibilities

Front-end Web
developer

• No MATLAB experience

• Minimal IT experience

• Expert at usability and Web
page design

• Minimal access to IT systems

• Expert at ASPX

• As service consumer, manages
presentation and usability

• Creates front-end applications

• Integrates MATLAB code with
language-specific frameworks and
environments

• Integrates WebFigures with the rest
of the Web page

For More Comprehensive Examples
This section contains code snippets intended to demonstrate specific
functionality related to working with figure and image data.

To see these snippets in the context of more fully-realized multi-step
examples, see the MATLAB Application Deployment Web Example Guide.

Working with Figures

Getting a Figure From a Deployed Component
For information about how to retrieve a figure from a deployed component, see
“Working with Functions that Return a Single WebFigure as the Function’s
Only Output” on page 7-18.

7-35

7 Web Deployment of Figures and Images

Working with Images

Getting Encoded Image Bytes from an Image in a Component

.NET

public byte[] getByteArrayFromDeployedComponent()
{

MWArray width = 500;
MWArray height = 500;
MWArray rotation = 30;
MWArray elevation = 30;
MWArray imageFormat = "png";

MWNumericArray result =
(MWNumericArray)deployment.getImageDataOrientation(

height,
width,
elevation,
rotation,
imageFormat);

return (byte[])result.ToVector(MWArrayComponent.Real);
}

Getting a Buffered Image in a Component

.NET

public byte[] getByteArrayFromDeployedComponent()
{

MWArray width = 500;
MWArray height = 500;
MWArray rotation = 30;
MWArray elevation = 30;
MWArray imageFormat = "png";

MWNumericArray result =
(MWNumericArray)deployment.getImageDataOrientation(

7-36

Working with MATLAB® Figure and Image Data

height,
width,
elevation,
rotation,
imageFormat);

return (byte[])result.ToVector(MWArrayComponent.Real);
}

public Image getImageFromDeployedComponent()
{

byte[] byteArray = getByteArrayFromDeployedComponent();
MemoryStream ms = new MemoryStream(myByteArray, 0,
myByteArray.Length);
ms.Write(myByteArray, 0, myByteArray.Length);
return Image.FromStream(ms, true);

}

Getting Image Data from a WebFigure
The following example shows how to get image data from a WebFigure object.
It also shows how to specify the image type and the orientation of the image.

.NET

WebFigure figure =
new WebFigure(deployment.getWebFigure());

WebFigureRenderer renderer =
new WebFigureRenderer();

//Creates a parameter object that can be changed
// to represent a specific WebFigure and its orientation.
//If you dont set any values it uses the defaults for that
// figure (what they were when the figure was created in M).
WebFigureRenderParameters param =

new WebFigureRenderParameters(figure);

param.Rotation = 30;
param.Elevation = 30;

7-37

7 Web Deployment of Figures and Images

param.Width = 500;
param.Height = 500;

//If you need a byte array that can be streamed out
// of a web page you can use this:
byte[] outputImageAsBytes =

renderer.RenderToEncodedBytes(param);

//If you need a .NET Image (can't be used on the web)
// you can use this code:
Image outputImageAsImage =

renderer.RenderToImage(param);

7-38

8

.NET Remoting

• “What Is .NET Remoting?” on page 8-2

• “Your Role in Building Distributed Applications” on page 8-4

• “.NET Remoting Prerequisites” on page 8-5

• “Selecting the Best Method of Accessing Your Component: MWArray API
or Native .NET API” on page 8-6

• “Creating a Remotable .NET Component” on page 8-8

• “Enabling Access to a Remotable .NET Component” on page 8-14

8 .NET Remoting

What Is .NET Remoting?

In this section...

“What Are Remotable Components?” on page 8-2

“Benefits of Using .NET Remoting” on page 8-2

What Are Remotable Components?
Remotable .NET components allow you to access MATLAB functionality
remotely, as part of a distributed system consisting of multiple applications,
domains, browsers, or machines.

To create a remotable component, you must first create the component and
then enable others to access it.

Benefits of Using .NET Remoting
There are many reasons to create remotable components:

• Cost savings — Changes to business logic do not require you to roll out
new software to every client. Instead, you can confine new updates to a
small set of business servers.

• Increased security for Web applications — Implementing .NET
Remoting allows your database, for example, to reside safely behind one or
more firewalls.

• Software Compatibility— Using remotable components, which employ
standard formatting protocols like SOAP (Simple Object Access Protocol),
can significantly enhance the compatibility of the component with libraries
and applications.

• Ability to run applications as Windows services — To run as a
Windows service, you must have access to a remoteable component hosted
by the service. Applications implemented as a Windows service provide
many benefits to application developers who require an automated server
running as a background process independent of a particular user account.

8-2

What Is .NET Remoting?

• Flexibility to isolate native code binaries that were previously
incompatible — Mix native and managed code (such as the MATLAB
Compiler Runtime) without restrictions.

What’s the Difference Between WCF and .NET Remoting?
You generate native .NET objects using .NET Remoting and native .NET
types using WCF.

What’s the difference between these two technologies and which should you
use?

WCF is an end-to-end Web Service. Many of the advantages afforded by .NET
Remoting—a wide selection of protocol interoperability, for instance—can be
achieved with a WCF interface, in addition to having access to a richer, more
flexible set of native data types. .NET Remoting can only support native
objects.

WCF offers more robust choices in most every aspect of Web-based
development, even implementation of a Java client, for example.

8-3

8 .NET Remoting

Your Role in Building Distributed Applications
Depending on your role in your organization, you may need assistance to
completely implement .NET Remoting. The next table, .NET Remoting
Deployment Roles, Responsibilities, and Tasks, describes some of the different
roles, or jobs, that MATLAB Builder NE users typically perform when
designing, building, running, and deploying a remotable .NET component.

.NET Remoting Deployment Roles, Responsibilities, and Tasks

Role Goal Tasks

MATLAB programmer Creates distributed .NET
applications run by remotable
components, from MATLAB
code.

• Writes and deploys
MATLAB code.

• Creates a deployable,
remotable .NET component
as in “Creating a Remotable
.NET Component” on page
8-8.

.NET programmer Exposes .NET applications to
end users.

• Writes client/server code
to access the remotable
component as in “Using
the MWArray API” on page
8-14 or “Using the Native
.NET API: Magic Square
Example” on page 8-21.

8-4

.NET Remoting Prerequisites

.NET Remoting Prerequisites
Before you enable .NET Remoting for your deployable component, be aware
of the following:

• You cannot enable both .NET Remoting and Windows Communication
Foundation (WCF) (as described in “Windows Communications Foundation
(WCF)™-Based Components” on page 6-17).

• It is important to determine if you derive more benefit and cost savings
by using the MWArray API or the native .NET API. Evaluate if .NET
Remoting is appropriate for your deployable component by reading
“Selecting the Best Method of Accessing Your Component: MWArray API
or Native .NET API” on page 8-6.

8-5

8 .NET Remoting

Selecting the Best Method of Accessing Your Component:
MWArray API or Native .NET API

As of R2008b, there are two data conversion API’s that are available to
marshal and format data across the managed (.NET) / unmanaged (MATLAB)
code boundary. In addition to the previously available MWArray API, the new
Native API is available. Each API has advantages and limitations and each
has particular applications for which it is best suited.

The MWArray API, which consists of the MWArray class and several derived
types that map to MATLAB data types, is the standard API that has been used
since the introduction of MATLAB Builder NE. It provides full marshaling
and formatting services for all basic MATLAB data types including sparse
arrays, structures, and cell arrays. This API requires the MATLAB MCR
to be installed on the target machine as it makes use of several primitive
MATLAB functions. For information about using this API, see “Using the
MWArray API” on page 8-14.

The Native API was designed especially, though not exclusively, to support
.NET remoting. It allows you to pass arguments and return values using
standard .NET types. This feature is especially useful for clients that access
a remoteable component using the native interface API, as it does not
require the client machine to have the MATLAB MCR installed. In addition,
as only native .NET types are used in this API, there is no need to learn
semantics of a new set of data conversion classes. This API does not directly
support .NET analogs for the MATLAB structure and cell array types. For
information about using this API, see “Using the Native .NET API: Magic
Square Example” on page 8-21.

Features of the MWArray API Compared With the Native .NET API

MWArray API Native .NET API

Marshaling/formatting
for all basic MATLAB
types

X

Pass arguments and
return values using
standard .NET types

X

8-6

Selecting the Best Method of Accessing Your Component: MWArray API or Native .NET API

Features of the MWArray API Compared With the Native .NET API
(Continued)

MWArray API Native .NET API

Access to remotable
component from client
without installed
MATLAB

X

Access to remotable
component from client
without installed MCR
(see “Using the Native
.NET API: Cell and
Struct Example” on
page 8-29).

X

Using Native .NET Structure and Cell Arrays
MATLAB Builder NE’s native .NET API accepts standard .NET data types
for inputs and outputs to MATLAB function calls.

These standard .NET data types are wrapped by the Object class—the base
class for all .NET data types. This object representation is sufficient as long
as the MATLAB functions have numeric, logical, or string inputs or outputs.
It does not work well for MATLAB-specific data types like structure (struct)
and cell arrays, since the native representation of these arrays types result in
a multi-dimensional Object array that is difficult to comprehend or process.

Instead, MATLAB Builder NE’ provides a special class hierarchy for struct
and cell array representation designed to easily interface with the native
.NET API.

See “Using the Native .NET API: Cell and Struct Example” on page 8-29 for
details.

8-7

8 .NET Remoting

Creating a Remotable .NET Component

In this section...

“Building a Remotable Component Using the Deployment Tool” on page 8-8

“Building a Remotable Component Using the mcc Command” on page 8-12

“Files Generated by the Compilation Process” on page 8-12

MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Uses tools to create a component that
is used by the .NET developer

Building a Remotable Component Using the
Deployment Tool

Preparing to Build Your Remote Component with deploytool

1 Copy the example files as follows depending on whether you plan to use the
MWArray API or the native .NET API:

• If using the MWArray API, copy the following folder that ships with
the MATLAB product to your working folder:

matlabroot\toolbox\dotnetbuilder\Examples\
VS8\NET\MagicRemoteExample\MWArrayAPI\MagicSquareRemoteComp

After you copy the files, at the MATLAB command prompt, change the
working directory (cd) to the new MagicSquareRemoteComp subfolder in
your working folder.

• If using the native .NET API, copy the following folder that ships with
the MATLAB product to your working folder:

8-8

Creating a Remotable .NET Component

matlabroot\toolbox\dotnetbuilder\Examples\
VS8\NET\MagicRemoteExample\
NativeAPI\MagicSquareRemoteComp

After you copy the file, at the MATLAB command prompt, change the
working directory (cd) to the new MagicSquareRemoteComp subfolder in
your working folder.

2 Write the MATLAB function Your MATLAB code does not require any
additions to support .NET Remoting. The following code for the makesquare
function is in the file makesquare.m in the MagicSquareRemoteComp
subfolder:

function y = makesquare(x)

%MAKESQUARE Magic square of size x.
% Y = MAKESQUARE(X) returns a magic square of size x.
% This file is used as an example for the MATLAB
% Builder NE product.

% Copyright 2001-2012 The MathWorks, Inc.
% $Revision: 1.1.8.22.2.1 $ $Date: 2011/12/12 17:04:33 $

y = magic(x);

3 In MATLAB, open the Deployment Tool by issuing the deploytool
command.

4 Click the Actions icon () in the upper-right corner. Then, select
Settings.

a Select .NET under Project Settings.

b Select Enable .NET Remoting.

c Click OK.

8-9

8 .NET Remoting

Build Your Remote Component with deploytool

Project Name MagicSquareComp

Class Name MagicSquareClass

File to compile makesquare

1 Start MATLAB, if you have not done so already.

2 Type deploytool at the command prompt, and press Enter. The
Deployment Project dialog box opens.

The Deployment Project Dialog Box

3 Create a deployment project using the Deployment Project dialog box:

a Type the name of your project, in the Name field.

b Enter the location of the project in the Location field. Alternately,
navigate to the location.

c Select the target for the deployment project from the Type drop-down
menu.

d Click OK.

8-10

Creating a Remotable .NET Component

Tip You can inspect the values in the Settings dialog before building your

project. To do so, click the Action icon () on the toolbar, and then click
Settings. Verify where your src and distrib folders will be created
because you will need to reference these folders later.

4 On the Build tab:

• If you are building a COM application, click Add files to open the Add
Files dialog box.

Click Open to select the file or files.

• If you are building a .NET application, click Add class. Type the name
of the class in the Class Name field, designated by the letter c:

For this class, add MATLAB files you want to compile by clicking Add
files then click Open to select the file or files. To add another class,
click Add class.

• You may optionally add supporting files. For examples of these files,
see the deploytool Help. To add these files, in the Shared Resources
and Helper Files area:

e Click Add files/directories

f Click Open to select the file or files.

Note If you are building a COM component (not a .NET component) and
you don’t have administrator privileges, you can select the Register the
resulting component for you only on the development machine
option in the Settings dialog of the Deployment Tool (in the Advanced
tab) or use the mcc -u option.

5 When you complete your changes, click the Build button (). When the
build finishes, click Close to dismiss the dialog box.

8-11

8 .NET Remoting

Building a Remotable Component Using the mcc
Command
From the MATLAB prompt, issue the following command:

mcc -B "dotnet:CompName,ClassName,
FrameworkVersion,ShareFlag,
RemoteFlag"

where:

• CompName is the name of the component you want to create.

• ClassName is the name of the C# class to which the component belongs.

• FrameworkVersion is the version of .NET Framework for the component
you are building. For example, 2.0 would denote .NET Framework 2.0.

• ShareFlag designates access to the component. Values are either private
or shared. Default is private.

• RemoteFlag designates either a remote or local component. Values are
either remote or local. Default is local.

For example, if you want to build a private remotable component using the
Magic Square example in Chapter 1, “Getting Started”, the mcc command to
build the component for the .NET 2.0 Framework might look like this:

mcc -B "dotnet:MagicSquareComp,MagicSquareClass,2.0,
private,remote"

Files Generated by the Compilation Process
After compiling the components, ensure you have the following files in your
distrib folder:

• MagicSquareComp.dll — The MWArray API component implementation
assembly used by the server.

• IMagicSquareComp.dll— The MWArray API component interface assembly
used by the client .

• MagicSquareCompNative.dll — The native .NET API component
implementation assembly used by the server.

8-12

Creating a Remotable .NET Component

• IMagicSquareCompNative.dll — The native .NET API component
interface assembly used by the client. You do not need to install an MCR
on the client when using this interface.

8-13

8 .NET Remoting

Enabling Access to a Remotable .NET Component

In this section...

“Using the MWArray API” on page 8-14

“Using the Native .NET API: Magic Square Example” on page 8-21

“Using the Native .NET API: Cell and Struct Example” on page 8-29

.NET Developer

Role Knowledge Base Responsibilities

.NET
Developer

• Little to no MATLAB
experience

• Moderate IT experience

• .NET expert

• Minimal access to IT
systems

• Integrates deployed
component with the rest
of the .NET application

Using the MWArray API

Why Use the MWArray API?
After you create the remotable component, you can set up a console server
and client using the MWArray API. For more information on choosing the right
API for your access needs, see “Selecting the Best Method of Accessing Your
Component: MWArray API or Native .NET API” on page 8-6.

Some reasons you might use the MWArray API instead of the native .NET
API are:

• You are working with data structure arrays, which the native .NET API
does not support.

• You or your users work extensively with many MATLAB data types.

• You or your users are familiar and comfortable using the MWArray API.

8-14

Enabling Access to a Remotable .NET Component

For information on accessing your component using the native .NET API, see
“Using the Native .NET API: Magic Square Example” on page 8-21.

Coding and Building the Hosting Server Application and
Configuration File
The server application hosts the remote component built in “Creating a
Remotable .NET Component” on page 8-8. You can also perform these steps
using the MWArray API (see “Using the Native .NET API: Magic Square
Example” on page 8-21).

The client application, running in a separate process, accesses
the remote component hosted by the server application.
Build the server using the Microsoft Visual Studio project file
MagicSquareServer\MagicSquareMWServer.csproj:

1 Change the references for the generated component assembly to
MagicSquareComp\distrib\MagicSquareComp.dll.

2 Select the appropriate build platform.

3 Select Debug or Release mode.

4 Build the MagicSquareMWServer project.

5 Supply the configuration file for the MagicSquareMWServer.

MagicSquareServer Code. Use the C# code for the server located in the
file MagicSquareServer\MagicSquareServer.cs:

using System;

using System.Runtime.Remoting;

namespace MagicSquareServer

{

class MagicSquareServer

{

static void Main(string[] args)

{

RemotingConfiguration.Configure

(@"..\..\..\..\MagicSquareServer.exe.config");

8-15

8 .NET Remoting

Console.WriteLine("Magic Square Server started...");

Console.ReadLine();

}

}

}

This code does the following processing:

• Reads the associated configuration file to determine

- The name of the component that it will host

- The remoting protocol and message formatting to use

- The lease time for the remote component

• Signals that the server is active and waits for a carriage return to be
entered before terminating.

MagicSquareServer Configuration File. The
configuration file for the MagicSquareServer is in the file
MagicSquareServer\MagicSquareServer.exe.config. The entire
configuration file, written in XML, follows:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<system.runtime.remoting>

<application>

<service>

<wellknown mode="SingleCall"

type="MagicSquareComp.MagicSquareClass, MagicSquareComp"

objectUri="MagicSquareClass.remote" />

</service>

<lifetime leaseTime= "5M" renewOnCallTime="2M"

leaseManagerPollTime="10S" />

<channels>

<channel ref="tcp" port="1234">

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

8-16

Enabling Access to a Remotable .NET Component

</channel>

</channels>

</application>

<debug loadTypes="true"/>

</system.runtime.remoting>

</configuration>

This code specifies:

• The mode in which the remote component will be accessed—in this case,
single call mode

• The name of the remote component, the component assembly, and the object
URI (uniform resource identifier) used to access the remote component

• The lease time for the remote component

• The remoting protocol (TCP/IP) and port number

• The message formatter (binary) and the permissions for the communication
channel (full trust)

• The server debugging option

Coding and Building the Client Application and Configuration
File
The client application, running in a separate process, accesses the remote
component running in the server application you built previously. (See
“Coding and Building the Hosting Server Application and Configuration File”
on page 8-15.

Next build the remote client using the Microsoft Visual Studio
project file MagicSquareClient\MagicSquareMWClient.csproj.
This file references both the shared data conversion assembly
matlabroot\toolbox\dotnetbuilder\bin\win32\v2.0\
MWArray.dll and the generated component interface assembly
MagicSquareComp\distrib\IMagicSquareComp.

To create the remote client using Microsoft Visual Studio:

1 Select the appropriate build platform.

8-17

8 .NET Remoting

2 Select Debug or Release mode.

3 Build the MagicSquareMWClient project.

4 Supply the configuration file for the MagicSquareMWServer.

MagicSquareClient Code. Use the C# code for the client located in the file
MagicSquareClient\MagicSquareClient.cs. The client code is shown here:

using System;

using System.Configuration;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

using System.Collections;

using System.Runtime.Serialization.Formatters;

using System.Runtime.Remoting.Channels.Tcp;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using IMagicSquareComp;

namespace MagicSquareClient

{

class MagicSquareClient

{

static void Main(string[] args)

{

try

{

RemotingConfiguration.Configure

(@"MagicSquareClient.exe.config");

String urlServer=

ConfigurationSettings.AppSettings["MagicSquareServer"];

IMagicSquareClass magicSquareComp=

(IMagicSquareClass)Activator.GetObject

8-18

Enabling Access to a Remotable .NET Component

(typeof(IMagicSquareClass),

urlServer);

// Get user specified command line arguments or set default

double arraySize= (0 != args.Length)

? Double.Parse(args[0]) : 4;

// Compute the magic square and print the result

MWNumericArray magicSquare=

(MWNumericArray)magicSquareComp.makesquare

(arraySize);

Console.WriteLine("Magic square of order {0}\n\n{1}",

arraySize, magicSquare);

}

catch (Exception exception)

{

Console.WriteLine(exception.Message);

}

Console.ReadLine();

}

}

}

This code does the following:

• The client reads the associated configuration file to get the name and
location of the remoteable component.

• The client instantiates the remoteable object using the static
Activator.GetObject method

• From this point, the remoting client calls methods on the remoteable
component exactly as it would call a local component method.

MagicSquareClient Configuration File. The
configuration file for the magic square client is in the file
MagicSquareClient\MagicSquareClient.exe.config. The configuration
file, written in XML, is shown here:

8-19

8 .NET Remoting

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

<add key="MagicSquareServer"

value="tcp://localhost:1234/MagicSquareClass.remote"/>

</appSettings>

<system.runtime.remoting>

<application>

<channels>

<channel name="MagicSquareChannel" ref="tcp" port="0">

<clientProviders>

<formatter ref="binary" />

</clientProviders>

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

</channel>

</channels>

</application>

</system.runtime.remoting>

</configuration>

This code specifies:

• The name of the remote component server and the remote component URI
(uniform resource identifier)

• The remoting protocol (TCP/IP) and port number

• The message formatter (binary) and the permissions for the communication
channel (full trust)

Starting the Server Application
Starting the server by doing the following:

1 Open a DOS or UNIX® command window and cd to
MagicSquareServer\bin\x86\v2.0\Debug.

2 Run MagicSquareServer.exe. You will see the message:

8-20

Enabling Access to a Remotable .NET Component

Magic Square Server started...

Starting the Client Application
Start the client by doing the following:

1 Open a DOS or UNIX command window and cd to
MagicSquareClient\bin\x86\v2.0\Debug.

2 Run MagicSquareClient.exe. After the MCR initializes, you should see
the following output:

Magic square of order 4

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Using the Native .NET API: Magic Square Example

.NET Developer

Role Knowledge Base Responsibilities

.NET
Developer

• Little to no MATLAB
experience

• Moderate IT experience

• .NET expert

• Minimal access to IT
systems

• Integrates deployed
component with the rest
of the .NET application

Why Use the Native .NET API?
After the remotable component has been created, you can set up a server
application and client using the native .NET API. For more information on
choosing the right API for your access needs, see “Selecting the Best Method of
Accessing Your Component: MWArray API or Native .NET API” on page 8-6.

8-21

8 .NET Remoting

Some reasons you might use the native .NET API instead of the MWArray
API are:

• You want to pass arguments and return values using standard .NET types,
and you or your users don’t work extensively with data types specific to
MATLAB.

• You want to access your component from a client machine without an
installed version of MATLAB.

For information on accessing your component using the MWArray API, see
“Using the MWArray API” on page 8-14.

Coding and Building the Hosting Server Application and
Configuration File
The server application will host the remote component you built in “Creating
a Remotable .NET Component” on page 8-8.

The client application, running in a separate process, will
access the remote component hosted by the server application.
Build the server with the Microsoft Visual Studio project file
MagicSquareServer\MagicSquareMWServer.csproj:

1 Change the references for the generated component assembly to
MagicSquareComp\distrib\MagicSquareCompNative.dll.

2 Select the appropriate build platform (32-bit or 64-bit).

3 Select Debug or Release mode.

4 Build the MagicSquareServer project.

5 Supply the configuration file for the MagicSquareServer.

MagicSquareServer Code. The C# code for the server is in the file
MagicSquareServer\MagicSquareServer.cs. The MagicSquareServer.cs
server code is shown here:

using System;

using System.Runtime.Remoting;

8-22

Enabling Access to a Remotable .NET Component

namespace MagicSquareServer

{

class MagicSquareServer

{

static void Main(string[] args)

{

RemotingConfiguration.Configure

(@"..\..\..\..\MagicSquareServer.exe.config");

Console.WriteLine("Magic Square Server started...");

Console.ReadLine();

}

}

}

This code does the following:

• Reads the associated configuration file to determine the name of the
component that it will host, the remoting protocol and message formatting
to use, as well as the lease time for the remote component.

• Signals that the server is active and waits for a carriage return to be
entered before terminating.

MagicSquareServer Configuration File. The
configuration file for the MagicSquareServer is in the file
MagicSquareServer\MagicSquareServer.exe.config. The entire
configuration file, written in XML, is shown here:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<system.runtime.remoting>

<application>

<service>

<wellknown mode="SingleCall"

type="MagicSquareCompNative.MagicSquareClass,

MagicSquareCompNative"

objectUri="MagicSquareClass.remote" />

</service>

8-23

8 .NET Remoting

<lifetime leaseTime= "5M" renewOnCallTime="2M"

leaseManagerPollTime="10S" />

<channels>

<channel ref="tcp" port="1234">

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

</channel>

</channels>

</application>

<debug loadTypes="true"/>

</system.runtime.remoting>

</configuration>

This code specifies:

• The mode in which the remote component will be accessed—in this case,
single call mode

• The name of the remote component, the component assembly, and the object
URI (uniform resource identifier) used to access the remote component

• The lease time for the remote component

• The remoting protocol (TCP/IP) and port number

• The message formatter (binary) and the permissions for the communication
channel (full trust)

• The server debugging option

Coding and Building the Client Application and Configuration
File
The client application, running in a separate process, accesses the
remote component running in the server application built in “Coding
and Building the Hosting Server Application and Configuration File”
on page 8-22. Build the remote client using the Microsoft Visual
Studio project file MagicSquareClient\MagicSquareClient.csproj
which references both the shared data conversion assembly
matlabroot\toolbox\dotnetbuilder\bin\win32\v2.0\
MWArray.dll and the generated component interface assembly

8-24

Enabling Access to a Remotable .NET Component

MagicSquareComp\distrib\IMagicSquareCompNative. To create the remote
client using Microsoft Visual Studio:

1 Select the appropriate build platform.

2 Select Debug or Release mode.

3 Build the MagicSquareClient project.

4 Supply the configuration file for the MagicSquareServer.

MagicSquareClient Code. The C# code for the client is in the file
MagicSquareClient\MagicSquareClient.cs. The client code is shown here:

using System;

using System.Configuration;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

using System.Collections;

using System.Runtime.Serialization.Formatters;

using System.Runtime.Remoting.Channels.Tcp;

using IMagicSquareCompNative;

namespace MagicSquareClient

{

class MagicSquareClient

{

static void Main(string[] args)

{

try

{

RemotingConfiguration.Configure

(@"MagicSquareClient.exe.config");

String urlServer=

ConfigurationSettings.AppSettings["MagicSquareServer"];

IMagicSquareClassNative magicSquareComp=

8-25

8 .NET Remoting

(IMagicSquareClassNative)Activator.GetObject

(typeof(IMagicSquareClassNative), urlServer);

// Get user specified command line arguments or set default

double arraySize= (0 != args.Length)

? Double.Parse(args[0]) : 4;

// Compute the magic square and print the result

double[,] magicSquare=

(double[,])magicSquareComp.makesquare(arraySize);

Console.WriteLine("Magic square of order {0}\n", arraySize);

// Display the array elements:

for (int i = 0; i < (int)arraySize; i++)

for (int j = 0; j < (int)arraySize; j++)

Console.WriteLine

("Element({0},{1})= {2}", i, j, magicSquare[i, j]);

}

catch (Exception exception)

{

Console.WriteLine(exception.Message);

}

Console.ReadLine();

}

}

}

This code does the following:

• The client reads the associated configuration file to get the name and
location of the remoteable component.

• The client instantiates the remoteable object using the static
Activator.GetObject method

• From this point, the remoting client calls methods on the remoteable
component exactly as it would call a local component method.

8-26

Enabling Access to a Remotable .NET Component

MagicSquareClient Configuration File. The
configuration file for the magic square client is in the file
MagicSquareClient\MagicSquareClient.exe.config. The configuration
file, written in XML, is shown here:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

<add key="MagicSquareServer"

value="tcp://localhost:1234/MagicSquareClass.remote"/>

</appSettings>

<system.runtime.remoting>

<application>

<channels>

<channel name="MagicSquareChannel" ref="tcp" port="0">

<clientProviders>

<formatter ref="binary" />

</clientProviders>

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

</channel>

</channels>

</application>

</system.runtime.remoting>

</configuration>

This code specifies:

• The name of the remote component server and the remote component URI
(uniform resource identifier)

• The remoting protocol (TCP/IP) and port number

• The message formatter (binary) and the permissions for the communication
channel (full trust)

Starting the Server Application
Start the server by doing the following:

8-27

8 .NET Remoting

1 Open a DOS or UNIX command and cd to
MagicSquareServer\bin\x86\v2.0\Debug.

2 Run MagicSquareServer.exe. You will see the message:

Magic Square Server started...

Starting the Client Application
Start the client by doing the following:

1 Open a DOS or UNIX command window and cdto
MagicSquareClient\bin\x86\v2.0\Debug.

2 Run MagicSquareClient.exe. After the MCR initializes you should see
the following output:

Magic square of order 4

Element(0,0)= 16
Element(0,1)= 2
Element(0,2)= 3
Element(0,3)= 13
Element(1,0)= 5
Element(1,1)= 11
Element(1,2)= 10
Element(1,3)= 8
Element(2,0)= 9
Element(2,1)= 7
Element(2,2)= 6
Element(2,3)= 12
Element(3,0)= 4
Element(3,1)= 14
Element(3,2)= 15
Element(3,3)= 1

8-28

Enabling Access to a Remotable .NET Component

Using the Native .NET API: Cell and Struct Example

Why Use the .NET API With Cell Arrays and Structs?
Using .NET representations of MATLAB struct and cell arrays is
recommended if both of these are true:

• You have MATLAB functions on a server with MATLAB struct or cell data
types as inputs or outputs

• You do not want or need to install an MCR on your client machines

The native MWArray, MWStructArray, and MWCellArray classes are members
of the MathWorks.MATLAB.NET.Arrays.native namespace.

The class names in this namespace are identical to the class names in
the MathWorks.MATLAB.NET.Arrays. The difference is that the native
representation of struct and cell arrays have no methods or properties that
require an MCR.

The matlabroot\toolbox\dotnetbuilder\Examples\VS8\NET folder has
example solutions you can practice building. The NativeStructCellExample
folder contains native struct and cell examples.

Building Your Component
This example demonstrates how to deploy a remotable component using
native struct and cell arrays. Before you set up the remotable client and
server code, build a remotable component.

If you have not yet built the component you want to deploy, see the
instructions in “Building a Remotable Component Using the Deployment
Tool” on page 8-8 or “Building a Remotable Component Using the mcc
Command” on page 8-12.

The Native .NET Cell and Struct Example
The server application hosts the remote component.

8-29

8 .NET Remoting

The client application, running in a separate process, accesses the remote
component hosted by the server application. Build the server with the
Microsoft Visual Studio project file NativeStructCellServer.csproj:

1 Change the references for the generated component assembly to
component_name\distrib\component_nameNative.dll.

2 Select the appropriate build platform.

3 Select Debug or Release mode.

4 Build the NativeStructCellServer project.

5 Supply the configuration file for the NativeStructCellServer. The C#
code for the server is in the file NativeStructCellServer.cs:

using System;

using System.Collections.Generic;

using System.Text;

using System.Runtime.Remoting;

namespace NativeStructCellServer

{

class NativeStructCellServer

{

static void Main(string[] args)

{

RemotingConfiguration.Configure(

@"NativeStructCellServer.exe.config");

Console.WriteLine("NativeStructCell Server started...");

Console.ReadLine();

}

}

}

This code reads the associated configuration file to determine:

• Name of the component to host

• Remoting protocol and message formatting to use

8-30

Enabling Access to a Remotable .NET Component

• Lease time for the remote component
In addition, the code also signals that the server is active and waits for a
carriage return before terminating.

Coding and Building the Client Application and Configuration
File
The client application, running in a separate process, accesses
the remote component running in the server application built
in “The Native .NET Cell and Struct Example” on page 8-29.
Build the remote client using the Microsoft Visual Studio project
file NativeStructCellClient\NativeStructCellClient.csproj
which references both the shared data conversion assembly
matlabroot\toolbox\dotnetbuilder\bin\win32\v2.0\
MWArray.dll and the generated component interface assembly
component_name\distrib\Icomponent_nameNative. To create the remote
client using Microsoft Visual Studio:

1 Select the appropriate build platform.

2 Select Debug or Release mode.

3 Build the NativeStructCellClient project.

4 Supply the configuration file for the NativeStructCellClient.

NativeStructCellClient Code. The C# code for the client is in the file
NativeStructCellClient\NativeStructCellClient.cs:

using System;

using System.Collections.Generic;

using System.Text;

using System.Runtime.Remoting;

using System.Configuration;

using MathWorks.MATLAB.NET.Arrays.native;

using INativeStructCellCompNative;

// This is a simple example that demonstrates the use

// of MathWorks.MATLAB.NET.Arrays.native package.

namespace NativeStructCellClient

8-31

8 .NET Remoting

{

class NativeStructCellClient

{

static void Main(string[] args)

{

try

{

RemotingConfiguration.Configure(

@"NativeStructCellClient.exe.config");

String urlServer =

ConfigurationSettings.AppSettings["NativeStructCellServer"];

INativeStructCellClassNative nativeStructCell =

(INativeStructCellClassNative)Activator.GetObject(typeof

(INativeStructCellClassNative), urlServer);

MWCellArray field_names = new MWCellArray(1, 2);

field_names[1, 1] = "Name";

field_names[1, 2] = "Address";

Object[] o = nativeStructCell.createEmptyStruct(1,field_names);

MWStructArray S1 = (MWStructArray)o[0];

Console.WriteLine("\nEVENT 2: Initialized structure as

received in client applications:\n\n{0}" , S1);

//Convert "Name" value from char[,] to a string since there's

no MWCharArray constructor on server that accepts

//char[,] as input.

char c = ((char[,])S1["Name"])[0, 0];

S1["Name"] = c.ToString();

MWStructArray address = new MWStructArray(new int[] { 1, 1 },

new String[] { "Street", "City", "State", "Zip" });

address["Street", 1] = "3, Apple Hill Drive";

address["City", 1] = "Natick";

address["State", 1] = "MA";

address["Zip", 1] = "01760";

Console.WriteLine("\nUpdating the 'Address' field to

:\n\n{0}", address);

Console.WriteLine("\n#################################\n");

8-32

Enabling Access to a Remotable .NET Component

S1["Address",1] = address;

Object[] o1 = nativeStructCell.updateField(1, S1, "Name");

MWStructArray S2 = (MWStructArray)o1[0];

Console.WriteLine("\nEVENT 5: Final structure as

received by client:\n\n{0}" , S2);

Console.WriteLine("\nAddress field: \n\n{0}" , S2["Address",1]);

Console.WriteLine("\n#################################\n");

}

catch (Exception exception)

{

Console.WriteLine(exception.Message);

}

Console.ReadLine();

}

}

}

This code does the following:

• The client reads the associated configuration file to get the name and
location of the remoteable component.

• The client instantiates the remoteable object using the static
Activator.GetObject method

• From this point, the remoting client calls methods on the remoteable
component exactly as it would call a local component method.

NativeStructCellClient Configuration File. The
configuration file for the NativeStructCellClient is in the file
NativeStructCellClient\NativeStructCellClient.exe.config:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<appSettings>

<add key="NativeStructCellServer" value=

"tcp://localhost:1236/NativeStructCellClass.remote"/>

</appSettings>

<system.runtime.remoting>

8-33

8 .NET Remoting

<application>

<channels>

<channel name="NativeStructCellChannel" ref="tcp" port="0">

<clientProviders>

<formatter ref="binary" />

</clientProviders>

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

</channel>

</channels>

</application>

</system.runtime.remoting>

</configuration>

This code specifies:

• Name of the remote component server and the remote component URI
(uniform resource identifier)

• Remoting protocol (TCP/IP) and port number

• Message formatter (binary) and the permissions for the communication
channel (full trust)

Starting the Server Application
Start the server by doing the following:

1 Open a DOS or UNIX command window and cd to
NativeStructCellServer\bin\x86\v2.0\Debug.

2 Run NativeStructCellServer.exe. The following output appears:

EVENT 1: Initializing the structure on server and sending
it to client:

Initialized empty structure:

Name: ' '
Address: []

8-34

Enabling Access to a Remotable .NET Component

##################################

EVENT 3: Partially initialized structure as
received by server:

Name: ' '
Address: [1x1 struct]

Address field as initialized from the client:

Street: '3, Apple Hill Drive'
City: 'Natick'

State: 'MA'
Zip: '01760'

##################################

EVENT 4: Updating 'Name' field before sending the
structure back to the client:

Name: 'The MathWorks'
Address: [1x1 struct]

##################################

Starting the Client Application
Start the client by doing the following:

1 Open a DOS or UNIX command window and cd to
NativeStructCellClient\bin\x86\v2.0\Debug.

2 Run NativeStructCellClient.exe. After the MCR initializes, the
following output appears:

EVENT 2: Initialized structure as
received in client applications:

8-35

8 .NET Remoting

1x1 struct array with fields:
Name
Address

Updating the 'Address' field to :

1x1 struct array with fields:
Street
City
State
Zip

#################################

EVENT 5: Final structure as received by client:

1x1 struct array with fields:
Name
Address

Address field:

1x1 struct array with fields:
Street
City
State
Zip

#################################

Coding and Building the Client Application and Configuration
File with the Native MWArray, MWStructArray, and
MWCellArray Classes

createEmptyStruct.m. Initialize the structure on the server and send it to
the client with the following MATLAB code:

8-36

Enabling Access to a Remotable .NET Component

function PartialStruct = createEmptyStruct(field_names)

fprintf('EVENT 1: Initializing the structure on server

and sending it to client:\n');

PartialStruct = struct(field_names{1},' ',field_names{2},[]);

fprintf(' Initialized empty structure:\n\n');

disp(PartialStruct);

fprintf('\n##################################\n');

updateField.m. Receive the partially updated structure from the client and
add more data to it, before passing it back to the client, with the following
MATLAB code:

function FinalStruct = updateField(st,field_name)

fprintf('\nEVENT 3: Partially initialized structure as

received by server:\n\n');

disp(st);

fprintf('Address field as initialized from the client:\n\n');

disp(st.Address);

fprintf('##################################\n');

fprintf(['\nEVENT 4: Updating ''', field_name, '''

field before sending the structure back to the client:\n\n']);

st.(field_name) = 'The MathWorks';

FinalStruct = st;

disp(FinalStruct);

fprintf('\n##################################\n');

NativeStructCellClient.cs. Create the client C# code:

Note In this case, you do not need the MCR on the system path.

using System;

using System.Collections.Generic;

using System.Text;

8-37

8 .NET Remoting

using System.Runtime.Remoting;

using System.Configuration;

using MathWorks.MATLAB.NET.Arrays.native;

using INativeStructCellCompNative;

// This is a simple example that demonstrates the use of

// MathWorks.MATLAB.NET.Arrays.native package.

namespace NativeStructCellClient

{

class NativeStructCellClient

{

static void Main(string[] args)

{

try

{

RemotingConfiguration.Configure

(@"NativeStructCellClient.exe.config");

String urlServer =

ConfigurationSettings.AppSettings[

"NativeStructCellServer"];

INativeStructCellClassNative nativeStructCell =

(INativeStructCellClassNative)Activator.GetObject(typeof

(INativeStructCellClassNative),

urlServer);

MWCellArray field_names = new MWCellArray(1, 2);

field_names[1, 1] = "Name";

field_names[1, 2] = "Address";

Object[] o = nativeStructCell.createEmptyStruct(1,field_names);

MWStructArray S1 = (MWStructArray)o[0];

Console.WriteLine("\nEVENT 2: Initialized structure as received

in client applications:\n\n{0}" , S1);

//Convert "Name" value from char[,] to a string since

// there's no MWCharArray constructor

// on server that accepts char[,] as input.

char c = ((char[,])S1["Name"])[0, 0];

S1["Name"] = c.ToString();

8-38

Enabling Access to a Remotable .NET Component

MWStructArray address =

want new MWStructArray(new int[] { 1, 1 },

new String[] { "Street", "City", "State", "Zip" });

address["Street", 1] = "3, Apple Hill Drive";

address["City", 1] = "Natick";

address["State", 1] = "MA";

address["Zip", 1] = "01760";

Console.WriteLine("\nUpdating the

'Address' field to :\n\n{0}", address);

Console.WriteLine("\n#################################\n");

S1["Address",1] = address;

Object[] o1 = nativeStructCell.updateField(1, S1, "Name");

MWStructArray S2 = (MWStructArray)o1[0];

Console.WriteLine("\nEVENT 5: Final structure as received by

client:\n\n{0}" , S2);

Console.WriteLine("\nAddress field: \n\n{0}" , S2["Address",1]);

Console.WriteLine("\n#################################\n");

}

catch (Exception exception)

{

Console.WriteLine(exception.Message);

}

Console.ReadLine();

}

}

}

NativeStructCellServer.cs. Create the server C# code:

using System;

using System.Collections.Generic;

using System.Text;

using System.Runtime.Remoting;

namespace NativeStructCellServer

{

8-39

8 .NET Remoting

class NativeStructCellServer

{

static void Main(string[] args)

{

RemotingConfiguration.Configure(

@"NativeStructCellServer.exe.config");

Console.WriteLine("NativeStructCell Server started...");

Console.ReadLine();

}

}

}

8-40

9

Troubleshooting

This chapter provides some solutions to common problems encountered using
the MATLAB Builder NE product.

• “Troubleshooting the Build Process ” on page 9-2

• “Failure to Find a Required File” on page 9-3

• “Diagnostic Messages” on page 9-4

9 Troubleshooting

Troubleshooting the Build Process

In this section...

“Viewing the Latest Build Log” on page 9-2

“Generating Verbose Output” on page 9-2

Viewing the Latest Build Log
To view the log of your most recent build process, open the
build log, which is generated in the intermediate folder for your
project. By default, the intermediate folder for a project is
project_folder/projectname_without_ext/src.

Generating Verbose Output
Telling the Deployment Tool to generate verbose output provides a more
detailed log of each build. These details can assist you in determining the
cause of problems you encounter.

To enable verbose output during builds, select Generate Verbose Output in
the Deployment Tool window.

9-2

Failure to Find a Required File

Failure to Find a Required File
If your application generates a diagnostic message indicating that a module
cannot be found, it could be that the MCR is not located properly on your
path. How to fix this problem depends on whether it occurs on a development
machine (where you are using the builder to create a component) or target
machine (where you are trying to use the component in your application).
The required locations are as follows for the MCR according to development
versus target machines.

• Make sure that matlabroot\runtime\architecture appears on your
system path ahead of any other MATLAB installations.
(matlabroot is your root MATLAB folder.)

• Verify that mcr_root\ver\runtime
\architecture appears on your system path.
(mcr_root is your root MCR folder) and ver represents the MCR version
number.

9-3

9 Troubleshooting

Diagnostic Messages
The following table shows diagnostic messages you might encounter, probable
causes for the message, and suggested solutions.

Note The MATLAB Builder NE product uses the MATLAB Compiler product
to generate components. This means that you might see diagnostic messages
from MATLAB Compiler. See “Compile-Time Errors” in the MATLAB
Compiler documentation for more information about those messages.

See the following table for information about some diagnostic messages.

Diagnostic Messages and Suggested Solutions

Message Probable Cause Suggested Solution

You may get this error
message while registering
the project DLL from the
DOS prompt. This usually
occurs if the MATLAB
product is not on the
system path.

See “Failure to Find a Required
File” on page 9-3.

You may get this error
if you try to deploy your
component without adding
the path for the DLL to the
system path on the target
machine.

On the target machine where the
COM component is to be used:

1 Use the extractCTF.exe
utility to decompress the .ctf
file generated by the builder
when you built the COM
component.

2 Look at the files in the CTF,
and note the path for the DLL.

3 Add this path to the system
path.

LoadLibrary
("component_name_1_0.dll")
failed - The specified
module could not be found.

9-4

Diagnostic Messages

Diagnostic Messages and Suggested Solutions (Continued)

Message Probable Cause Suggested Solution

See the MATLAB Compiler
documentation for
more information about
extractctf.exe.

You may get this error
if you do not have
appropriate permissions to
deploy a COM component
on a particular system.

See “Add-in and COM Component
Registration” on page 12-3.

MBUILD.BAT: Error: The
chosen compiler does
not support building COM
objects.

The chosen compiler does
not support building COM
objects.

Rerun mbuild -setup and choose
a supported compiler.

Error in component_name.
class_name.x: Error
getting data conversion
flags.

This is often caused by
mwcomutil.dll not being
registered.

1 Open a DOS window.

2 Change folders to
matlabroot\runtime
\architecture.

3 Run the following command:
mwregsvr mwcomutil.dll

(matlabroot is your root
MATLAB folder.)

9-5

9 Troubleshooting

Diagnostic Messages and Suggested Solutions (Continued)

Message Probable Cause Suggested Solution

Error in VBAProject:
ActiveX component can't
create object.

• Project DLL is not
registered.

• An incompatible
MATLAB DLL exists
somewhere on the
system path.

If the DLL is not registered,

1 Open a DOS window.

2 Change folders to
projectdir\distrib.

3 Run the following command:
mwregsvr projectdll.dll

(projectdir represents the
location of your project files).

object ref not set to
instance of an object

This occurs when an
object that has not been
instantiated is called

Instantiate the object (declare
it as new). See “Classes and
Methods” on page 4-3in
this User’s Guide for more
information.

Error in VBAProject:
Automation error The
specified module could not
be found.

This usually occurs if
MATLAB is not on the
system path.

See “Failure to Find a Required
File” on page 9-3.

QueryInterface for
interface <COM OBJECT
NAME> failed.

You might be using
the incorrect number
and/or type of function
parameters to call into
your COM object.

Function calls to COM objects
that encapsulate MATLAB
functions must have the same
number and data type of
arguments as the COM object. In
general:

• Use a Variant data type for the
return type of the COM object.

• Use doubles as default numeric
input parameters (rather than
integers).

9-6

Diagnostic Messages

Diagnostic Messages and Suggested Solutions (Continued)

Message Probable Cause Suggested Solution

You might also use development
tools such as OLEVIEW and
Object Browser, which ship
with Microsoft Visual Studio
and Microsoft Visual Basic,
respectively, to verify the
expected function signature of
TypeLib for the COM object.

Showing a modal dialog
box or form when the
application is not running
in UserInteractive
mode is not a valid
operation. Specify
the ServiceNotification
or DefaultDesktopOnly
style to display a
notification from a
service application.

This warning occurs when
ASP.NET code tries to
bring up a dialog box.

If occurs because
getframe() makes the
figure window visible
before performing
the capture and thus
fails when running in
IIS. msgbox() calls in
MATLAB code cause the
warning to appear also.

Work around this problem by
doing the following:

1 Open the Windows Control
Panel.

2 Open Services.

3 From the list of services, select
and open the IIS Admin
service.

4 In the Properties dialog, on
the Log On tab, select Local
System Account.

5 Select the option Allow
Service to Interact with
Desktop.

Enhanced Error Diagnostics Using mstack Trace
Use this enhanced diagnostic feature to troubleshoot problems that occur
specifically during MATLAB code execution.

9-7

9 Troubleshooting

To implement this feature, use .NET exception handling to invoke the
MATLAB function inside of the .NET application, as demonstrated in this
try-catch code block:

try
{
Magic magic = new Magic();
magic.callmakeerror();
}
catch(Exception ex)
{
Console.WriteLine("Error: {0}", exception);
}

When an error occurs, the MATLAB code stack trace is printed before the
Microsoft .NET application stack trace, as follows:

... MATLAB code Stack Trace ...
at

file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\
CalldmakeerrComp_mcr\compiler\g388611\ca
thy\MagicDemoComp\dmakeerror.m,name
dmakeerror_error2,line at 14.

at
file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\
CalldmakeerrComp_mcr\compiler\g388611\ca
thy\MagicDemoComp\dmakeerror.m,name
dmakeerror_error1,line at 11.

at
file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\
CalldmakeerrComp_mcr\compiler\g388611\ca
thy\MagicDemoComp\dmakeerror.m,name dmakeerror,line at 4.

at
file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\
CalldmakeerrComp_mcr\compiler\g388611\ca
thy\MagicDemoComp\calldmakeerror.m,name
calldmakeerror,line at 2.

... .Application Stack Trace ...
at MathWorks.MATLAB.NET.Utility.MWMCR.EvaluateFunction

9-8

Diagnostic Messages

(String functionName, Int32 numArgsOut, Int
32 numArgsIn, MWArray[] argsIn)

at MathWorks.MATLAB.NET.Utility.MWMCR.EvaluateFunction
(Int32 numArgsOut, String functionName, MWA
rray[] argsIn)

at CalldmakeerrComp.Calldmakeerr.calldmakeerror() in
h:\compiler\g388611\cathy\MagicDemoComp\src\
Calldmakeerr.cs:line 140

at MathWorks.Demo.MagicSquareApp.MagicDemoApp.Main(String[]
args) in H:\compiler\g388611\cathy\Ma

gicDemoCSharpApp\MagicDemoApp.cs:line 52

9-9

9 Troubleshooting

9-10

10

Reference Information

• “Requirements for the MATLAB® Builder™ NE Product” on page 10-2

• “Data Conversion Rules” on page 10-4

• “Overview of Data Conversion Classes” on page 10-17

• “MWArray Class Specification” on page 10-24

• “Application Deployment Terms” on page 10-25

10 Reference Information

Requirements for the MATLAB Builder NE Product

In this section...

“System and Compiler Requirements” on page 10-2

“Path Modifications Required for Accessibility” on page 10-2

“Limitations and Restrictions” on page 10-2

System and Compiler Requirements
You must have the MATLAB and MATLAB Compiler products installed to
install the MATLAB Builder NE product.

MATLAB Builder NE is available only on Windows (32-bit and 64-bit
versions).

For an up-to-date list of all the system and compiler software
supported by MATLAB, the builders, and MATLAB Compiler, see
http://www.mathworks.com/support/compilers/current_release/.

Path Modifications Required for Accessibility
In order to use some screen-readers or assistive technologies, such as JAWS®,
you must add the following DLLs to your Windows path:

JavaAccessBridge.dll
WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

Limitations and Restrictions
In general, limitations and restrictions on the use of the builder are the same
as those for MATLAB Compiler. See the MATLAB Compiler documentation
for details.

10-2

http://www.mathworks.com/support/compilers/current_release/

Requirements for the MATLAB® Builder™ NE Product

Using CGI Scripts
As of Release 2006b, CGI scripts can call MATLAB using the Engine API
interface if you have a concurrent or designated license.

10-3

10 Reference Information

Data Conversion Rules

In this section...

“Managed Types to MATLAB Arrays” on page 10-4

“MATLAB Arrays to Managed Types” on page 10-5

“.NET Types to MATLAB Types” on page 10-7

“Character and String Conversion” on page 10-16

“Unsupported MATLAB Array Types” on page 10-16

Tip Learn about creating type-safe interfaces for .NET components, in order
to avoid data conversion tasks with MWArray. See Chapter 6, “Type-Safe
Interfaces, WCF, and MEF” for details.

Managed Types to MATLAB Arrays
The following table lists the data conversion rules used when converting
native .NET types to MATLAB arrays.

Note The conversion rules listed in these tables apply to scalars, vectors,
matrices, and multidimensional arrays of the native types listed.

Conversion Rules: Managed Types to MATLAB Arrays

Native .NET
Type

MATLAB
Array Comments

System.Double double —

System.Single single

System.Int64 int64

System.Int32 int32

System.Int16 int16

System.Byte int8

Available only when the makeDouble
constructor argument is set to false. The
default is true, which creates a MATLAB
double type.

10-4

Data Conversion Rules

Conversion Rules: Managed Types to MATLAB Arrays (Continued)

Native .NET
Type

MATLAB
Array Comments

System.String char None

System.Boolean logical None

MATLAB Arrays to Managed Types
The following table lists the data conversion rules used when converting
MATLAB arrays to native .NET types.

Note The conversion rules apply to scalars, vectors, matrices, and
multidimensional arrays of the listed MATLAB types.

Conversion Rules: MATLAB Arrays to Managed Types

MATLAB
Type

.NET Type
(Primitive) .NET Type (Class) Comments

cell N/A MWCellArray

structure N/A MWStructArray

char System.String MWCharArray

Cell and struct
arrays have no
corresponding
.NET type.

double System.Double MWNumericArray

single System.Single MWNumericArray

Default is type
double.

uint64 System.Int64 MWNumericArray Not supported

uint32 System.Int32 MWNumericArray Not supported

uint16 System.Int16 MWNumericArray Not supported

uint8 System.Byte MWNumericArray None

logical System.Boolean MWLogicalArray None

10-5

10 Reference Information

Conversion Rules: MATLAB Arrays to Managed Types (Continued)

MATLAB
Type

.NET Type
(Primitive) .NET Type (Class) Comments

Function
handle

N/A N/A None

Object N/A N/A None

10-6

Data Conversion Rules

.NET Types to MATLAB Types
In order to create .NET interfaces that describe the type-safe API of a
MATLAB Builder NE generated component, you must decide on the .NET
types used for input and output parameters.

When choosing input types, consider how .NET inputs become MATLAB
types. When choosing output types, consider the inverse conversion

The following tables list the data conversion results and rules used to convert
.NET types to MATLAB arrays and MATLAB arrays to .NET types.

See Chapter 6, “Type-Safe Interfaces, WCF, and MEF” in this User’s
Guide for a complete overview of using type-safe interfaces to generate
MATLAB-compatible type-safe arrays.

Note Invalid conversions result in a thrown ArgumentException

Conversion Results: .NET Types to MATLAB Types

.NET Type Converts to MATLAB Type

NumericType

• System.Double

• System.Single

• System.Byte

• System.Int16

• System.Int32

• System.Int64

• System.Int64

numeric

System.Boolean logical

System.Char

System.String

char

10-7

10 Reference Information

Conversion Results: .NET Types to MATLAB Types (Continued)

.NET Type Converts to MATLAB Type

NumericType[N] NumericType[1,N]

NumericType[Pn,..,P1,M,N] NumericType[M,N,P1,..,Pn]

System.Boolean[N] logical [1,N]

System.Boolean[Pn,..,P1,M,N] logical [M,N,P1,..,Pn]

System.Char[N] char [1,N]

System.Char[Pn,..,P1,M,N] char [M,N,P1,..,Pn]

System.String[N] char [N,max_string_length]

System.String[Pn,..,P1,N] char [N,max_string_length,
P1,..,Pn]

Scalar .NET struct MATLAB struct constructed from
public instance fields of the .NET
struct

.NET struct [N] MATLAB struct [1,N] where each
element is constructed from public
instance fields of the .NET struct

.NET struct [M,N] MATLAB struct [M,N] where each
element is constructed from public
instance fields of the .NET struct

native.MWStructArray struct

native.MWCellArray cell

Hashtable struct

Dictionary <K,V>Where K = string
and V = scalar or array of [Numeric,
boolean, Char, String]

struct

ArrayList cell

10-8

Data Conversion Rules

Conversion Results: .NET Types to MATLAB Types (Continued)

.NET Type Converts to MATLAB Type

Any other .NET type in the default
application domain

.NET object

Any other serializable .NET type in
a non-default application domain

.NET object

10-9

10 Reference Information

Conversion Rules: MATLAB Numeric Types to .NET Types

To Convert This
MATLAB Type:

To this: Follow these rules:

Scalar The type must be
scalar in MATLAB. For
example, a 1 X 1 int in
MATLAB.

Vector The type must be a
vector in MATLAB.
For example, a 1 X N
or N X 1 int array in
MATLAB.

numeric

N-dimensional array The N-dimensional
array type specified
by the user must
match the rank of the
MATLAB numeric
array.

Tip When converting MATLAB numeric arrays, widening conversions are
allowed. For example, an int can be converted to a double. The type specified
must be a numeric type that is equal or wider. Narrowing conversions throw
an ArgumentException.

Caution .NET types are not as flexible as MATLAB types. Take care and
test appropriately with .NET outputs before integrating data into your
applications.

10-10

Data Conversion Rules

Conversion Rules: MATLAB Char Arrays to .NET Types

To Convert This
MATLAB Type:

To this: Follow these rules:

Char The char must be
scalar.

Char array The N-dimensional Char
type must match the
rank of the MATLAB
char array.

String MATLAB char array
must be [1,N]

char

String array The N-dimensional
MATLAB char array
can be converted to
(N-1)-dimensional
array of type String.

10-11

10 Reference Information

Conversion Rules: MATLAB Logical Arrays to .NET Types

To Convert This
MATLAB Type:

To this: Follow these rules:

Boolean The logical must be
scalar.

Boolean[] The MATLAB logical
array must be [1,N] or
[N,1].

logical

Boolean array The N-dimensional
Boolean array must
match the rank of the
MATLAB logical
array.

10-12

Data Conversion Rules

Conversion Rules: Cell Array to .NET Types

To Convert This
MATLAB Type:

To this: Follow these rules:

System.Array The N-dimensional
MATLAB cell
array is converted
to an N-dimensional
System.Array of type
object.

cell

ArrayList The MATLAB cell
array must be a vector.

Caution If the MATLAB cell array contains a struct, it is left unchanged.
All other types are converted to native types. Any nested cell array is
converted to a System.Array matching the dimension of the cell array, as
illustrated in this code snippet:

Let C = {[1,2,3], {[1,2,3]},'Hello world'}
% be a cell

C can be converted to an object[1,3] where
object[1,1] contains int[,]
object[1,2] contains an object[1,1]
whose first element in an
int[,] object[1,3] contains char[,].

Note Any nested cell array is converted to a System.Array that matches the
dimension of the cell array

10-13

10 Reference Information

Conversion Rules: Struct to .NET Types

To Convert This
MATLAB Type:

To this: Follow these rules:

.NET struct The name and number
of public fields in the
specified .NET struct
must match the name
and number of fields in
the MATLAB struct.

struct

Hashtable A scalar struct can
be converted to a
Hashtable. Any
nested struct will
also be converted
to a Hashtable. If
the nested struct is
not a scalar, then an
ArgumentException is
thrown. The dictionary
key must be of type
String.

10-14

Data Conversion Rules

Conversion Rules: .NET Objects in MATLAB to .NET Native Objects

To Convert this
MATLAB Type:

To this: Follow these rules:

.NET object Type or super-type of
the containing object

A .NET object in
MATLAB can only
be converted to a type
or a super-type.

10-15

10 Reference Information

Character and String Conversion
A native .NET string is converted to a 1-by-N MATLAB character array, with
N equal to the length of the .NET string.

An array of .NET strings (string[]) is converted to an M-by-N character array,
with M equal to the number of elements in the string ([]) array and N equal to
the maximum string length in the array.

Higher dimensional arrays of String are similarly converted.

In general, an N-dimensional array of String is converted to an N+1
dimensional MATLAB character array with appropriate zero padding where
supplied strings have different lengths.

Unsupported MATLAB Array Types
The MATLAB Builder NE product does not support the following MATLAB
array types because they are not CLS-compliant:

• int8

• uint16

• uint32

• uint64

Note While it is permissible to pass these types as arguments to a MATLAB
Builder NE component, it is not permissible to return these types, as they
are not CLS compliant.

10-16

Overview of Data Conversion Classes

Overview of Data Conversion Classes

In this section...

“Overview” on page 10-17

“Returning Data from MATLAB to Managed Code” on page 10-18

“Example of MWNumericArray in a .NET Application” on page 10-18

“Interfaces Generated by the MATLAB® Builder™ NE Product” on page
10-18

Overview
The data conversion classes are

• MWArray

• MWIndexArray

• MWCellArray

• MWCharacterArray

• MWLogicalArray

• MWNumericArray

• MWStructArray

Note For complete reference information about the MWArray class hierarchy,
see the MWArray Class Library Reference (available online only).

Tip Learn about creating type-safe interfaces for .NET components, in order
to avoid data conversion tasks with MWArray. See Chapter 6, “Type-Safe
Interfaces, WCF, and MEF” for details.

MWArray and MWIndexArray are abstract classes. The other classes represent
the standard MATLAB array types: cell, character, logical, numeric, and

10-17

../MWArrayAPI/HTML/index.html

10 Reference Information

struct. Each class provides constructors and a set of properties and methods
for creating and accessing the state of the underlying MATLAB array.

There are some data types (cell arrays, structure arrays, and arrays of
complex numbers) commonly used in the MATLAB product that are not
available as native .NET types. To represent these data types, you must
create an instance of eitherMWCellArray, MWStructArray, or MWNumericArray.

Returning Data from MATLAB to Managed Code
All data returned from a MATLAB function to a .NET method is represented
as an instance of the appropriate MWArray subclass. For example, a MATLAB
cell array is returned as an MWCellArray object.

Return data is not automatically converted to a native array. If you need to
get the corresponding native array type, call the ToArray method, which
converts a MATLAB array to the appropriate native data type, except for cell
and struct arrays. See “The Magic Square Example” on page 1-9.

Example of MWNumericArray in a .NET Application
Here is a code fragment that shows how to convert a double value (5.0) to a
MWNumericArray type:

MWNumericArray arraySize = 5.0;
magicSquare = magic.MakeSqr(arraySize);

After the double value is converted and assigned to the variable arraySize,
you can use the arraySize argument with the MATLAB based method
without further conversion. In this example, the MATLAB based method is
magic.MakeSqr(arraySize).

Interfaces Generated by the MATLAB Builder NE
Product
For each MATLAB function that you specify as part of a .NET component,
the builder generates an API based on the MATLAB function signature, as
follows:

10-18

Overview of Data Conversion Classes

• A single output signature that assumes that only a single output is required
and returns the result in a single MWArray rather than an array of MWArrays.

• A standard signature that specifies inputs of type MWArray and returns
values as an array of MWArray.

• A feval signature that includes both input and output arguments in the
argument list rather than returning outputs as a return value. Output
arguments are specified first, followed by the input arguments.

Single Output API

Note Typically you use the single output interface for MATLAB functions
that return a single argument. You can also use the single output interface
when you want to use the output of a function as the input to another function.

For each MATLAB function, the builder generates a wrapper class that has
overloaded methods to implement the various forms of the generic MATLAB
function call. The single output API for a MATLAB function returns a single
MWArray value.

For example, the following table shows a generic function foo along with the
single output API that the builder generates for its several forms.

Generic
MATLAB
function

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ..., InN,

varargin)

API if there
are no input
arguments

public MWArray foo()

10-19

10 Reference Information

API if there
are one or
more input
arguments

public MWArray foo(
MWArray In1,
MWArray In2
...
MWArray inN)

API if there are
optional input
arguments

public MWArray foo(
MWArray In1,
MWArray In2,

...,
MWArray
inN
params MWArray[] varargin
)

In the example, the input arguments In1, In2, and inN are of type MWArray
objects.

Similarly, in the case of optional arguments, the params arguments are of
type MWArray. (The varargin argument is similar to the varargin function
in MATLAB — it allows the user to pass a variable number of arguments.)

Note When you call a class method in your .NET application, specify all
required inputs first, followed by any optional arguments.

Functions having a single integer input require an explicit cast to type
MWNumericArray to distinguish the method signature from a standard
interface signature that has no input arguments.

Standard API
Typically you use the standard interface for MATLAB functions that return
multiple output values.

The standard calling interface returns an array of MWArray objects rather
than a single array object.

10-20

Overview of Data Conversion Classes

The standard API for a generic function with none, one, more than one, or a
variable number of arguments, is shown in the following table.

Generic
MATLAB
function

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ..., InN,

varargin)

API if there
are no input
arguments

public MWArray[] foo(
int numArgsOut
)

API if there
is one input
argument

public MWArray [] foo(
int numArgsOut,
MWArray In1
)

API if there
are two
to N input
arguments

public MWArray[] foo(
int numArgsOut,
MWArray In1,
MWArray In2,
\... MWArray InN)

API if there
are optional
arguments,
represented
by the
varargin
argument

public MWArray[] foo(
int numArgsOut,
MWArray in1,
MWArray in2,
MWArray InN,
params MWArray[]
varargin)

Details about the arguments for these samples of standard signatures are
shown in the following table.

10-21

10 Reference Information

Argument Description Details

numArgsOut Number of
outputs

An integer indicating the number of
outputs you want the method to return.

The value of numArgsOut must be less
than or equal to the MATLAB function
nargout.

The numArgsOut argument must always
be the first argument in the list.

In1, In2,
...InN

Required input
arguments

All arguments that follow numArgsOut
in the argument list are inputs to the
method being called.

Specify all required inputs first. Each
required input must be of type MWArray
or one of its derived types.

varargin Optional inputs You can also specify optional inputs if
your MATLAB code uses the varargin
input: list the optional inputs, or
put them in an MWArray[] argument,
placing the array last in the argument
list.

Out1, Out2,
...OutN

Output
arguments

With the standard calling interface, all
output arguments are returned as an
array of MWArrays.

feval API
In addition to the methods in the single API and the standard API, in most
cases, the builder produces an additional overloaded method. If the original
MATLAB code contains no output arguments, then the builder will not
generate the feval method interface.

For a function with the following structure,

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ..., InN,

varargin)

10-22

Overview of Data Conversion Classes

The builder generates the following API, known as the feval interface,

public void foo
(int numArgsOut,
ref MWArray [] ArgsOut,
MWArray[] ArgsIn)

where the arguments are as follows:

numArgsOut Number of
outputs

Same as standard interface.

An integer indicating the number of
outputs you want to return.

This number generally matches the
number of output arguments that
follow. The varargout array counts
as just one argument, if present.

ref MWArray []
ArgsOut

Output
arguments

Following numArgsOut are all the
outputs of the original MATLAB
code, each listed in the same order
as they appear on the left side of the
original MATLAB code.

A ref attribute prefaces all output
arguments indicating that these
arrays are passed by reference.

MWArray[] ArgsIn Input
arguments

MWArray types or a supported .NET
primitive type.

When you pass an instance of
an MWArray type, the underlying
MATLAB array is passed directly to
the called function. Native types are
first converted to MWArray types.

10-23

10 Reference Information

MWArray Class Specification

Tip Learn about creating type-safe interfaces for .NET components, in order
to avoid data conversion tasks with MWArray. See Chapter 6, “Type-Safe
Interfaces, WCF, and MEF” for details.

For complete reference information about the MWArray class hierarchy, see
the MWArray Class Library Reference (available online only).

See “Making .NET Namespaces Available for Your Generated Component
and MWArray Libraries” on page 1-29 for information about referencing the
classes in your .NET programming environment.

10-24

../MWArrayAPI/HTML/index.html

Application Deployment Terms

Application Deployment Terms
Glossary of Deployment Product Terms

A

Add-in— A Microsoft Excel add-in is an executable piece of code that can be
actively integrated into a Microsoft Excel application. Add-ins are front-ends
for COM components, usually written in some form of Microsoft Visual Basic.

API — Application program interface. An implementation of the proxy
software design pattern. See MWArray.

Application — An end user-system into which a deployed functions or
solution is ultimately integrated. Typically, the end goal for the Deployment
customer is integration of a deployed MATLAB function into a larger
enterprise environment application. The deployment products prepare
the MATLAB function for integration by wrapping MATLAB code with
enterprise-compatible source code, such as C, C++, C# (.NET), F#, and Java
code.

Assembly— An executable bundle of code, especially in .NET. For example,
after building a deployable .NET component with MATLAB Builder NE,
the .NET developer integrates the resulting .NET assembly into a larger
enterprise C# application. See Executable.

B

Binary — See Executable.

Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other
object-oriented languages that is a prototype for an object in an object-oriented
language. It is analogous to a derived type in a procedural language. A class
is a set of objects which share a common structure and behavior. Classes
relate in a class hierarchy. One class is a specialization (a subclass) of another
(one of its superclasses) or comprises other classes. Some classes use other

10-25

10 Reference Information

classes in a client-server relationship. Abstract classes have no members, and
concrete classes have one or more members. Differs from a MATLAB class

Compile — In MATLAB Compiler terminology, to compile a component
involves generating a binary that wraps around MATLAB code, enabling it to
execute in various computing environments. For example, when MATLAB
code builds with MATLAB Builder JA, a Java wrapper provides Java code
that enables the MATLAB code to execute in a Java environment.

COM component — In MATLAB Builder EX, the executable back-end code
behind a Microsoft Excel add-in. In MATLAB Builder NE, an executable
component, to be integrated with Microsoft COM applications.

Component — In MATLAB, a generic term used to describe the wrappered
MATLAB code produced by MATLAB Compiler. You can plug these
self-contained bundles of code you plug into various computing environments.
The wrapper enables the compatibility between the computing environment
and your code.

Console application — Any application that is executed from a system
command prompt window. If you are using a non-Windows operating system,
console applications are often referred to as standalone applications.

CTF archive (Component Technology File)— The Component Technology File
(CTF) archive is embedded by default in each generated binary by MATLAB
Compiler. It houses the deployable package. All MATLAB-based content in
the CTF archive uses the Advanced Encryption Standard (AES) cryptosystem.
See “Additional Details” in the MATLAB Compiler User’s Guide.

D

Data Marshaling — Data conversion, usually from one type to another.
Unless a MATLAB deployment customer is using type-safe interfaces, data
marshaling—as from mathematical data types to MathWorks data types such
as represented by the MWArray API—must be performed manually, often
at great cost.

Deploy— The act of integrating a component into a larger-scale computing
environment, usually to an enterprise application, and often to end users.

10-26

Application Deployment Terms

DLL — Dynamic link library. Microsoft’s implementation of the shared
library concept for Windows. Using DLLs is much preferred over the previous
technology of static (or non-dynamic) libraries, which had to be manually
linked and updated.

E

Executable— An executable bundle of code, made up of binary bits (zeros and
ones) and sometimes called a binary.

H

Helper files — Files that support the main file or the file that calls all
supporting functions. Add resources that depend upon the function that
calls the supporting function to the Shared Resources and Helper Files
section of the Deployment Tool GUI. Other examples of supporting files or
resources include:

• Functions called using eval (or variants of eval)

• Functions not on the MATLAB path

• Code you want to remain private

• Code from other programs that you want to compile and link into the
main file

I

Integration — Combining a deployed component’s functionality with
functionality that currently exists in an enterprise application. For example,
a customer creates a mathematical model to forecast trends in certain
commodities markets. In order to use this model in a larger-scale financial
application (one written with the Microsoft .NET Framework, for instance)
the deployed financial model must be integrated with existing C# applications,
run in the .NET enterprise environment. Integration is usually performed by
an IT developer, rather than a MATLAB Programmer, in larger environments.

J

10-27

10 Reference Information

JAR — Java archive. In computing software, a JAR file (or Java ARchive)
aggregates many files into one. Software developers generally use JARs
to distribute Java applications or libraries, in the form of classes and
associated metadata and resources (text, images, etc.). Computer users can
create or extract JAR files using the jar command that comes with a Java
Development Kit (JDK).

JDK— The Java Development Kit is a free Sun Microsystems product which
provides the environment required for programming in Java. The JDK is
available for various platforms, but most notably Sun™ Solaris and Microsoft
Windows. To build components with MATLAB Builder JA, download the JDK
that corresponds to the latest version of Java supported by MATLAB.

JRE— Java Run-Time Environment is the part of the Java Development Kit
(JDK) required to run Java programs. It comprises the Java Virtual Machine,
the Java platform core classes, and supporting files. It does not include the
compiler, debugger, or other tools present in the JDK. The JRE is the smallest
set of executables and files that constitute the standard Java platform.

M

Magic Square— A square array of integers arranged so that their sum is the
same when added vertically, horizontally, or diagonally.

Marshaling — See Data Marshaling.

mbuild— MATLAB Compiler command that invokes a script which compiles
and links C and C++ source files into standalone applications or shared
libraries. For more information, see the mbuild function reference page.

mcc — The MATLAB command that invokes MATLAB Compiler. It is the
command-line equivalent of using the Deployment Tool GUI. See the mcc
reference page in the MATLAB Compiler User’s Guide for the complete list
of options available. Each builder product has customized mcc options. See
the respective builder documentation for details.

MCR — The MATLAB Compiler Runtime is an execution engine made
up of the same shared libraries. MATLAB uses these libraries to enable
the execution of MATLAB files on systems without an installed version of

10-28

Application Deployment Terms

MATLAB. To deploy a component, you package the MCR along with it. Before
you use the MCR on a system without MATLAB, run the MCR Installer.

MCR Installer — An installation program run to install the MATLAB
Compiler Runtime on a development machine that does not have an installed
version of MATLAB. Find out more about the MCR Installer by reading
“Distribute MATLAB Code Using the MATLAB Compiler Runtime (MCR)”.

MCR Singleton — See Shared MCR Instance.

mxArray interface — The MATLAB data type containing all MATLAB
representations of standard mathematical data types.

MWArray interface — A proxy to mxArray. An application program interface
(API) for exchanging data between your application and MATLAB. Using
MWArray, you marshal data from traditional mathematical types to a form
that can be processed and understood by MATLAB data type mxArray. There
are different implementations of the MWArray proxy for each application
programming language.

P

Package— The act of bundling the deployed component, along with the MCR
and other files, for rollout to users of the MATLAB deployment products.
After running the packaging function of the Deployment Tool, the package
file resides in the distrib subfolder. On Windows®, the package is a
self-extracting executable. On platforms other than Windows, it is a .zip file.
Use of this term is unrelated to Java Package.

Program— A bundle of code that is executed to achieve a purpose. Programs
usually are written to automate repetitive operations through computer
processing. Enterprise system applications usually consist of hundreds or
even thousands of smaller programs.

Proxy — A software design pattern typically using a class, which functions
as an interface to something else. For example, MWArray is a proxy for
programmers who need to access the underlying type mxArray.

S

10-29

10 Reference Information

Shared Library— Groups of files that reside in one space on disk or memory
for fast loading into Windows applications. Dynamic-link libraries (DLLs) are
Microsoft’s implementation of the shared library concept in for Microsoft
Windows.

Shared MCR Instance — When using MATLAB Builder NE or MATLAB
Builder JA, you can create a shared MCR instance, also known as a singleton.
For builder NE, this only applies to COM components. When you invoke
MATLAB Compiler with the -S option through the builders (using either mcc
or the Deployment Tool), a single MCR instance is created for each COM
or Java component in an application. You reuse this instance by sharing it
among all subsequent class instances within the component. Such sharing
results in more efficient memory usage and eliminates the MCR startup cost
in each subsequent class instantiation. All class instances share a single
MATLAB workspace and share global variables in the MATLAB files used
to build the component. MATLAB Builder NE and MATLAB Builder EX
are designed to create singletons by default for .NET assemblies and COM
components, respectively. For more information, see “Sharing an MCR
Instance in COM or Java Applications” on page 13-38.

Standalone application — Programs that are not part of a bundle of linked
libraries (as in shared libraries). Standalones are not dependent on operating
system services and can be accessed outside of a shared network environment.
Standalones are typically .exes (EXE files) in the Windows run-time
environment.

System Compiler — A key part of Interactive Development Environments
(IDEs) such as Microsoft Visual Studio. Before using MATLAB Compiler,
select a system compiler using the MATLAB command mbuild -setup.

T

Type-safe interface — An API that minimizes explicit type conversions
by hiding the MWArray type from the calling application. Using type-safe
interfaces, for example, .NET Developers work directly with familiar native
data types. You can avoid performing tedious MWArray data marshaling by
using type-safe interfaces.

W

10-30

Application Deployment Terms

WAR — Web Application ARchive. In computing, a WAR file is a JAR file
used to distribute a collection of JavaServer pages, servlets, Java classes,
XML files, tag libraries, and static Web pages (HTML and related files) that
together constitute a Web application.

WCF—Windows Communication Foundation. The Windows Communication
Foundation™ (or WCF) is an application programming interface in the .NET
Framework for building connected, service-oriented, Web-centric applications.
WCF is designed in accordance with service oriented architecture principles to
support distributed computing where services are consumed. Clients consume
multiple services that can be consumed by multiple clients. Services are
loosely coupled to each other.

Webfigure— A MathWorks representation of a MATLAB figure, rendered on
the Web. Using the WebFigures feature, you display MATLAB figures on a
Web site for graphical manipulation by end users. This enables them to use
their graphical applications from anywhere on the Web, without the need to
download MATLAB or other tools that can consume costly resources.

Windows standalone application—Windows standalones differ from regular
standalones in that Windows standalones suppress their MS-DOS window
output. The equivalent method to specify a Windows standalone target on
the mcc command line is “-e Suppress MS-DOS Command Window” If you are
using a non-Windows operating system, console applications are referred to
as standalone applications.

10-31

10 Reference Information

10-32

11

Function Reference

componentinfo
deploytool
figToImStream
mcc
ntswrap

componentinfo

Purpose Query system registry about COM component created with MATLAB
Builder NE

Syntax info = componentinfo

info = componentinfo(component_name)

info = componentinfo(component_name, major_revision_number)

info = componentinfo(component_name, major_revision_number,

minor_revision_number)

Arguments component_name MATLAB string naming the COM
component created by MATLAB Builder
NE. Names are case sensitive. If the
argument is not supplied, information is
returned on all installed components.

major_revision_number Component major revision number. If the
argument is not supplied, information is
returned on all major revisions.

minor_revision_number Component minor revision number.
Default value is 0.

Description info = componentinfo returns information for all components
installed on the system.

info = componentinfo(component_name) returns information for all
revisions of component_name.

info = componentinfo(component_name, major_revision_number)
returns information for the most recent minor revision corresponding to
major_revision_number of component_name.

info = componentinfo(component_name, major_revision_number,
minor_revision_number) returns information for the specific major
and minor version of component_name.

The return value is an array of structures representing all the registry
and type information needed to load and use the component.

11-2

componentinfo

When you supply a component name, major_revision_number and
minor_revision_number are interpreted as shown next.

Value Information Returned

> 0 Information on a specific major and minor revision.

0 Information on the most recent revision. When omitted,
minor_revision_number is assumed to be 0.

< 0 Information on all versions.

This table describes the fields in componentinfo.

Registry Information Returned by componentinfo

Field Description

Name Component name.

TypeLib Component type library.

LIBID Component type library GUID.

MajorRev Major version number .

MinorRev Minor version number.

FileName Type library file name and path. Since all the builder
components have the type library bound into the DLL, this
file name is the same as the DLL name and path.

11-3

componentinfo

Registry Information Returned by componentinfo (Continued)

Field Description

Interfaces An array of structures defining all interface definitions in
the type library. Each structure contains two fields:

• Name - Interface name.

• IID - Interface GUID.

CoClasses An array of structures defining all COM classes in the
component. Each structure contains these fields:

• Name - Class name.

• CLSID - GUID of the class.

• ProgID - Version-dependent program ID.

• VerIndProgID - Version-independent program ID.

• InprocServer32 - Full name and path to component DLL.

• Methods - A structure containing function prototypes
of all class methods defined for this interface. This
structure contains four fields:

- IDL - An array of Interface Description Language
function prototypes.

- M - An array of MATLAB function prototypes.

- C - An array of C-language function prototypes.

- VB - An array of VBA function prototypes.

• Properties - A cell array containing the names of all class
properties.

• Events - A structure containing function prototypes of
all events defined for this class. This structure contains
four fields:

11-4

componentinfo

Registry Information Returned by componentinfo (Continued)

Field Description

- IDL - An array of Interface Description Language
function prototypes.

- M - An array of MATLAB function prototypes.

- C - An array of C-language function prototypes.

- VB - An array of VBA function prototypes.

Tips Use the componentinfo function to get information (such as class name,
program ID) to pass on to users of a component that you create.

The componentinfo function also provides a record of changes made to
the registry on your development machine. This information might be
useful for debugging if you run into problems.

Examples Function Call Returned Information

Info = componentinfo Information for all installed
components.

Info =
componentinfo('mycomponent')

Information for all revisions
of mycomponent.

Info =
componentinfo('mycomponent',1,0)

Information for revision 1.0
of mycomponent.

11-5

deploytool

Purpose Open GUI for MATLAB Builder NE and MATLAB Compiler

Syntax deploytool

Description The deploytool command opens the Deployment Tool window, which
is the graphical user interface (GUI) for the MATLAB Builder NE and
MATLAB Compiler products.

See “The Magic Square Example” on page 1-9 to get started using the
Deployment Tool to create .NET and COM components, and see the
MATLAB Compiler documentation for information about using the
Deployment Tool to create standalone applications and libraries.

See Chapter 1, “Getting Started”, for more information about deploying
with the GUI.

Desired Results Command

Start Deployment Tool GUI with the
New/Open dialog box active

deploytool (default)
or
deploytool -n

Start Deployment Tool GUI and load
project_name

deploytool project_name.prj

Start Deployment Tool command line
interface and build project_name after
initializing

deploytool -build project_name.prj

Start Deployment Tool command line
interface and package project_name after
initializing

deploytool -package project_name.prj

11-6

deploytool

Desired Results Command

Start Deployment Tool and package an
existing project from the Command Line
Interface. Specifying the package_name is
optional. By default, a project is packaged
into a .zip file. On Windows, if the
package_name ends with .exe, the project
is packaged into a self-extracting .exe.

deploytool -package project_name.prj
package_name

Display MATLAB Help for the deploytool
command

deploytool -?

-win32 Run in 32-Bit Mode

Use this option to build a 32-bit application on a 64-bit system only
when the following are both true:

• You use the same MATLAB installation root (install_root) for both
32-bit and 64-bit versions of MATLAB.

• You are running from a Windows command line (not a MATLAB
command line).

11-7

figToImStream

Purpose Stream out figure “snapshot” as byte array encoded in format specified,
creating signed byte array in .png format

Syntax output type = figToImStream ('fighandle', figure_handle,
'imageFormat', image_format, 'outputType', output_type)

Description The output type = figToImStream ('fighandle', figure_handle,
'imageFormat', image_format, 'outputType', output_type)
command also accepts user-defined variables for any of the input
arguments, passed as a comma-separated list

The size and position of the printed output depends on the figure’s
PaperPosition[mode] properties.

Options figToImStream('figHandle', Figure_Handle, ...) allows you to
specify the figure output to be used. The Default is the current image

figToImStream('imageFormat', [png|jpg|bmp|gif]) allows you to
specify the converted image format. Default value is png.

figToImStream('outputType', [int8!uint8]) allows you to specify
an output byte data type. uint8 (unsigned byte) is used primarily for
.NET primitive byte. Default value is uint8.

Examples Convert the current figure to a signed png byte array:

surf(peaks)
bytes = figToImStream

Convert a specific figure to an unsigned bmp byte array:

f = figure;
surf(peaks);
bytes = figToImStream('figHandle', f, ...

'imageFormat', 'bmp', ...
'outputType', 'uint8');

11-8

mcc

Purpose Invoke MATLAB Compiler

Syntax mcc -win32 -W 'dotnet:component_name,class_name,
framework_version,Private|Encryption_Key_Path'
file1[file2...fileN]
[class{class_name:file1 [,file2,...,fileN]},...]
[-d output_dir_path]
-T link:lib

Description mcc is the MATLAB command that invokes the MATLAB Compiler
product. You can issue the mcc command either from the MATLAB
command prompt (MATLAB mode) or the DOS or UNIX command line
(standalone mode).

mcc prepares MATLAB file(s) for deployment outside of the MATLAB
environment. When used with the MATLAB Builder NE product,
wrapper files can be used with all CLS-compliant languages, such as
C#, Microsoft Visual Basic .NET, and C++ with Managed Extensions.

For each MATLAB file, the main function is a method of the wrapper
class generated by MATLAB Builder NE.

Options The -W option is used when running mcc with MATLAB Builder NE.

For a complete list of all mcc command options, see mcc in the MATLAB
Compiler User’s Guide documentation.

-W
Tells the compiler to create a wrapper function. This option takes
a string argument that specifies the following characteristics of
the component.

11-9

mcc

-W String Elements Description

dotnet: Keyword that tells the compiler the type of
component to create, followed by a colon. Specify
dotnet to create a .NET component.

component_name Specifies the name of the component and its
namespace, which is a period-separated list, such
as companyname.groupname.component.

class_name Specifies the name of the .NET class to be created.

framework_version Specifies the version of the Microsoft .NET
Framework you want to use to compile the
component. You can specify either:
0.0 — Use the latest supported version on the
target machine.
verion_major.version_minor — Use a specific
version of the framework (for example, 2.0).
Feature are often version-specific. Consult
the documentation for the feature you are
implementing to get the Microsoft .NET
Framework version requirements.

Private|Encryption_Key_Path Specifies whether the component to be created is a
private assembly or a shared assembly. To create a
shared assembly, you must specify the full path to
the encryption key file used to sign the assembly.

local|remote Specifies the remoting type of the component. See
Chapter 8, “.NET Remoting”.

file1 [file2...fileN]
Specifies the MATLAB files that are to be encapsulated as
methods in the class being created (class_name).

class{class_name:file1 [,file2,...,fileN]},...
(Optional) Specifies additional classes that you want to include
in the component. To use this option, you specify the class name,
followed by a colon, and then the names of the files you want to

11-10

mcc

include in the class. You can include this multiple times to specify
multiple classes.

[-d output_dir_path]
(Optional) Tells the builder to create a folder and copy the output
files to it. If you use mcc instead of the Deployment Tool, the
project_folder\src and project_folder\distrib folders are
not automatically created.

-C
Overrides automatically embedding the CTF archive in
builder-generated .NET or COM components. See for details.

-T
Specifies the output type. To create a .NET component, specify
the keyword link:lib, which links objects into a shared library
(DLL).

-win32 Run in 32-Bit Mode

Use this option to build a 32-bit application on a 64-bit system only
when the following are both true:

• You use the same MATLAB installation root (install_root) for both
32-bit and 64-bit versions of MATLAB.

• You are running from a Windows command line (not a MATLAB
command line).

11-11

ntswrap

Purpose Generates type-safe API

Syntax ntswrap.exe [-c namespace.class] [-i interface_name]
[-a assembly_name]

Description Available as a MATLAB function or Windows console executable.

ntswrap.exe [-c namespace.class] [-i interface_name]
[-a assembly_name] accepts command line switches in any order.

Run ntswrap to generate a type-safe interface for a MATLAB Builder
NE generated component.

Arguments Inputs

-a .NET_native_interface.dll
Absolute or relative path to assembly containing .NET
statically-typed interface, referenced by -i switch.

-b MATLAB_Builder_NE_Component.dll
Path to folder containing MATLAB Builder NE component that
defines component referenced by -c switch

-c component_class_name
Namespace-qualified name of MATLAB Builder NE component in
assembly identified by path in -b switch

-d
Enables debugging of the type-safe API assembly

Incompatible with -s.

-i interface_name
Namespace-qualified name of user-supplied interface in assembly
identified by path in -a switch

-k
Keep generated type safe API source code; do not delete after
processing

11-12

ntswrap

-n namespace_containing_generated_type-safe_API_class
Optional. If specified, places generated type-safe API in specifed
namespace

-o output_folder
Optional. If specified, all output files will be written to specified,
preallocated folder

-s
Generate source code only; do not compile type-safe API source
into an assembly

-v vx.x
Version of Microsoft .NET Framework (csc compiler) used to
generate type-safe API assembly (for example v2.0)

Incompatible with -s.

-w
name_of_generated_type-safe_API_wrapper_class_and_assembly

Optional. If specified, overrides default name of generated
type-safe API class and assembly

Incompatible with -c.

Outputs

ComponentInterface.dll
.NET binary containing type-safe API class. Requires
ComponentNative.dll,Interface.dll and MWArray.dll

ComponentInterface.cs
Optional output, produced by -s and -k

Examples ntswrap.exe -c AddOneComp.Mechanism
-i IAddOne
-a IAddOne.dll

Issuing this command generates a type-safe API for the MATLAB
Builder NE class Mechanism in the namespace AddOneCompNative.

11-13

ntswrap

By default, ntswrap compiles the source code into an assembly
MechanismIAddOne.dll.

11-14

12

Creating and Installing
COM Components

• “Building a Deployable COM Component” on page 12-2

• “Packaging a Deployable COM Component” on page 12-3

• “Embedded CTF Archives” on page 12-5

• “Using the Command-Line Interface” on page 12-6

• “Installing COM Components on a Target Computer” on page 12-9

12 Creating and Installing COM Components

Building a Deployable COM Component
See “Deployable Component Creation” on page 1-13 in the MATLAB Builder
NE part of this user’s guide.

12-2

Packaging a Deployable COM Component

Packaging a Deployable COM Component
See “Packaging Your Component (Optional)” on page 1-16 in the MATLAB
Builder NE part of this user’s guide.

Add-in and COM Component Registration

Note COM components are used in both MATLAB Builder EX and COM
Builder, therefore some of the instructions relating to building and packaging
COM components and add-ins can be shared between products.

When you create your COM component, it is registered in either
HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER, based on your log-in privileges.

If you find you need to change your run-time permissions due to security
standards imposed by Microsoft or your installation, you can do one of the
following before deploying your COM component or add-in:

• Log on as administrator before running your COM component or add-in

• Run the following mwregsvr command prior to running your COM
component or add-in, as follows:

mwregsvr [/u] [/s] [/useronly] project_name.dll

where:

- /u allows any user to unregister a COM component or add-in for this
server

- /s runs this command silently, generating no messages. This is helpful
for use in silent installations.

- /useronly allows only the currently logged-in user to run the COM
component or add-in on this server

12-3

12 Creating and Installing COM Components

Caution If your COM component is registered in the USER hive, it will not be
visible to Windows Vista or Windows 7 users running as administrator on
systems with UAC (User Access Control) enabled.

If you register a component to the USER hive under Windows 7 or Windows
Vista, your COM component may fail to load when running with elevated
(administrator) privileges.

If this occurs, do the following to re-register the component to the LOCAL
MACHINE hive:

1 Unregister the component with this command:

mwregsvr /u /useronly my_dll.dll

2 Reregister the component to the LOCAL MACHINE hive with this command:

mwregsvr my_dll.dll

12-4

Embedded CTF Archives

Embedded CTF Archives
As of R2008b, the MATLAB Builder NE product now embeds the CTF archive
within generated components, by default. This offers convenient deployment
of a single output file since all encrypted MATLAB file data is now contained
within the component.

For information on how to produce a separate CTF archive (the default
behavior before R2008b), see “MCR Component Cache and CTF Archive
Embedding” on page 5-9.

12-5

12 Creating and Installing COM Components

Using the Command-Line Interface
A MATLAB class cannot be directly compiled into a COM object. You can,
however, use a user-generated class inside a MATLAB file and build a COM
object from that file. You can use the MATLAB command-line interface
instead of the GUI to create COM objects. Do this by issuing the mcc command
with options. If you use mcc, you do not create a project.

Note See the MATLAB Compiler documentation for a complete description
of the mcc command and its options.

The following table provides an overview of some mcc options related to
components, along with syntax and examples of their usage.

Using the Command Line to Create COM Components

Action to Perform mcc Option to Use Description

-W com The W option with com as the type controls the
generation of wrapper files, which you can use to
support components.

Syntax
mcc -W
'com:<component_name>[,<class_name>[,<major>.<minor>]]'

An unspecified <class_name> defaults to <component_name>, and an
unspecified version number defaults to the latest version built or 1.0, if
there is no previous version.

Create component
that has one class.

Example
mcc -W 'com:mycomponent,myclass,1.0' -T link:lib foo.m bar.m

The example creates a COM component called mycomponent, which
contains a single COM class named myclass with methods foo and bar,
and a version of 1.0.

12-6

Using the Command-Line Interface

Using the Command Line to Create COM Components (Continued)

Action to Perform mcc Option to Use Description

Not needed A separate COM named <class_name> is created
for each class argument that is passed.

Following the <class_name> parameter is a
comma-separated list of source files that are
encapsulated as methods for the class.

Syntax
class{<class_name>:[file, [file,...]]}

Add additional
classes to a COM
component.

Example
mcc -B 'ccom:mycomponent,myclass,1.0'
foo.m bar.m class{myclass2:foo2.m, bar2.m}

The example creates a COM component named mycomponent with two
classes: myclass has methods foo and bar, and myclass2 has methods
foo2 and bar2. The version is version 1.0.

-B ccom: Uses the bundle file.

Syntax
mcc -B '<filename>'[:<a1>,<a2>,...,<an>]

Simplify the
command-line input
for components.

Example
mcc -B 'ccom:mycomponent,myclass,1.0' foo.m bar.m

-S By default, a new MCR instance is created for each
instance of each COM class in the component. Use
-S to change the default.

This option tells the builder to create a single
MCR at the time when the first COM class is
instantiated. This MCR is reused and shared
among all subsequent class instances, resulting
in more efficient memory usage and eliminating
the MCR startup cost in each subsequent class
instantiation.
When using -S, note that all class instances
share a single MATLAB workspace and share
global variables in the MATLAB files used to
build the component. Therefore, properties of a

Control how each
COM class uses the
MCR.

12-7

12 Creating and Installing COM Components

Using the Command Line to Create COM Components (Continued)

Action to Perform mcc Option to Use Description

COM class behave as static properties instead of
instance-wise properties.

Note The default behavior dictates that a new
MCR be created for each instance of a class, so
when the class is destroyed, the MCR is destroyed
as well. If you want to retain the state of global
variables (such as those allocated for drawing
figures, for instance), use the -S option.

Example
mcc -S -B 'ccom:mycomponent,myclass,1.0' foo.m bar.m

The example creates a COM component called mycomponent containing
a single COM class named myclass with methods foo and bar, and
a version of 1.0.

When multiple instances of this class are instantiated in an application,
only one MCR is initialized, and it is shared by each instance.

-d The \src and \distrib subfolders are needed to
package components.

Create subfolders
needed for
deployment and
copy associated files
to them.

Syntax
-d foldername

12-8

Installing COM Components on a Target Computer

Installing COM Components on a Target Computer
To install and deploy a COM object created with MATLAB Builder NE,
perform the following steps:

1 Install the MATLAB Compiler Runtime as described in the MATLAB
Compiler User’s Guide.

2 Build and package as described in “Building a Deployable COM Component”
on page 12-2 and “Packaging a Deployable COM Component” on page 12-3.

3 Copy the package to the target computer and run the package.

4 From a Windows command prompt on the target system, navigate to the
folder where you saved the package. If you use the command dir, you
should see the .dll created for your COM object. You will need to register
the .dll manually using the command regsvr32, as follows:

regsvr32 myCom_1_0.dll

12-9

12 Creating and Installing COM Components

12-10

13

Programming with COM
Components Created by
the MATLAB Builder NE
Product

• “General Techniques” on page 13-3

• “Registering and Referencing the Utility Library” on page 13-5

• “Creating an Instance of a Class in Microsoft® Visual Basic®” on page 13-6

• “Calling the Methods of a Class Instance” on page 13-9

• “Calling a COM Object in a Visual C++ Program” on page 13-12

• “Using a COM Component in a .NET Application” on page 13-15

• “Adding Events to COM Objects” on page 13-16

• “Passing Arguments ” on page 13-21

• “Using Flags to Control Array Formatting and Data Conversion” on page
13-24

• “Using MATLAB Global Variables in Microsoft® Visual Basic®” on page
13-31

• “Blocking Execution of a Console Application That Creates Figures” on
page 13-34

• “MCR Run-Time Options” on page 13-37

• “Sharing an MCR Instance in COM or Java Applications” on page 13-38

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

• “Obtaining Registry Information” on page 13-40

• “Handling Errors During a Method Call” on page 13-42

13-2

General Techniques

General Techniques
After you package and install a COM component created by the MATLAB
Builder NE product, you can access the component in any program that
supports COM, such as Microsoft Visual Basic, Microsoft Visual C++®, or
Visual C#.

Your code module must do the following:

• Load the components created by the builder

- “Registering and Referencing the Utility Library” on page 13-5

- “Creating an Instance of a Class in Microsoft® Visual Basic®” on page
13-6

• Call methods of the component class

- “Calling the Methods of a Class Instance” on page 13-9

- “Calling a COM Object in a Visual C++ Program” on page 13-12

- “Adding Events to COM Objects” on page 13-16

- “Obtaining Registry Information” on page 13-40

• Deal with data conversion and parameter passing

- “Passing Arguments ” on page 13-21

- “Using Flags to Control Array Formatting and Data Conversion” on
page 13-24

- “Using MATLAB Global Variables in Microsoft® Visual Basic®” on page
13-31

• Process errors

- “Handling Errors During a Method Call” on page 13-42

13-3

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Note These topics provide general information on how to integrate COM
components created with the builder into your COM-compliant programs.
The presentation focuses on the special programming techniques needed for
components based on the MATLAB product and generated by the builder. It
assumes that you have a working knowledge of the programming language
used in these programs.

For information about programming with COM objects in Microsoft Visual
Studio, see articles in the MSDN Library, such as Calling COM Components
from .NET Clients.

13-4

http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/callcomcomp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/callcomcomp.asp

Registering and Referencing the Utility Library

Registering and Referencing the Utility Library
The MWComUtil library provided with the MATLAB Builder NE product is
freely distributable. The MWComUtil library includes seven classes and three
enumerated types. These utilities are required for array processing, and they
provide type definitions used in data conversion.

The library is contained in the file mwcomutil.dll. It must be registered once
on each machine that uses components created with the builder.

Register the MWComUtil library at the DOS command prompt with the
command:

mwregsvr mwcomutil.dll

To use the types in the library, make sure that you reference the MWComUtil
library in your current project:

1 Select Tools > References.

2 Select MWComUtil 7.5 Type Library.

Note You must specify the full path of the component when calling
mwregsvr, or make the call from the folder in which the component resides.
mwregsvr.exe is supplied with the MCR.

13-5

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Creating an Instance of a Class in Microsoft Visual Basic

In this section...

“Advantages and Disadvantages” on page 13-6

“CreateObject Function” on page 13-6

“Microsoft® Visual Basic® New Operator” on page 13-7

“Advantages of Each Technique” on page 13-8

“Declaring a Reusable Class Instance” on page 13-8

Advantages and Disadvantages
Each technique listed here has advantages and disadvantages.

For an example of creating a class instance in Microsoft Visual C++, see
“Calling a COM Object in a Visual C++ Program” on page 13-12.

CreateObject Function
This method uses the Microsoft Visual Basic application program interface
(API) CreateObject function to create an instance of the class.

1 Dimension a variable of type Object to hold a reference to the class
instance.

2 Call CreateObject with the Program ID (ProgID) for the class as an
argument.

Here is a programming example:

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
' (call some methods on aClass)
Exit Function

Handle_Error:

13-6

Creating an Instance of a Class in Microsoft® Visual Basic®

foo = Err.Description
End Function

Microsoft Visual Basic New Operator
This method uses the Microsoft Visual Basic New operator on a variable
explicitly dimensioned as the class to be created.

1 Make sure that you reference the type library containing the class in the
current Visual Basic project.

a Open the Visual Basic editor.

b Select Project > References > Available References.

c Select the necessary type library.

2 Dimension the class instance.

3 Use New to instantiate the class with a particular name.

The following sample function, foo, shows how to use the New operator to
create a class instance:

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As mycomponent.myclass

On Error Goto Handle_Error
Set aClass = New mycomponent.myclass
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

In this example, the class instance could be dimensioned as simply myclass.
The full declaration in the form <component-name>.<class-name> guards
against name collisions that could occur if other libraries in the current
project contain types named myclass.

13-7

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Advantages of Each Technique
Both techniques (using CreateObject and using New) are equivalent in the
way they function, but each has different advantages. The first technique
does not require a reference to the type library in the Visual Basic project,
while the second results in faster code execution. The second technique has
the added advantage of enabling Auto-List-Members and Auto-Quick-Info
in the Visual Basic editor to help you work with your classes.

Declaring a Reusable Class Instance
In the previous examples, the class instance used to call the method is a
local variable within a procedure. Thus a new class instance is created and
destroyed for each call to the method. As an alternative, you can declare a
single module-scoped class instance that is reused by all function calls. The
next example shows this technique:

Dim aClass As mycomponent.myclass

Function foo(x1 As Variant, x2 As Variant) As Variant
On Error Goto Handle_Error
If aClass Is Nothing Then

Set aClass = New mycomponent.myclass
End If
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

13-8

Calling the Methods of a Class Instance

Calling the Methods of a Class Instance

In this section...

“Standard Mapping Technique” on page 13-9

“Variant” on page 13-10

“Examples of Passing Input and Output Parameters” on page 13-10

Standard Mapping Technique
After you create a class instance, you can call the class methods to access the
encapsulated MATLAB functions. The MATLAB Builder NE product uses
a standard technique to map the original MATLAB function syntax to the
method’s argument list. This standard mapping technique is as follows:

• nargout

When a method has output arguments, the first argument is always
nargout, which is of type Long. This input parameter passes the normal
MATLAB nargout parameter to the encapsulated function and specifies
how many outputs are requested. Methods that do not have output
arguments do not pass a nargout argument.

• Output parameters

Following nargout are the output parameters listed in the same order as
they appear on the left side of the original MATLAB function.

• Input parameters

Next come the input parameters listed in the same order as they appear on
the right side of the original MATLAB function.

For example, the most generic MATLAB function is:

function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)

This function maps directly to the following Microsoft Visual Basic signature:

Sub foo(nargout As Long, _
Y1 As Variant, _
Y2 As Variant, _

13-9

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

.

.
varargout As Variant, _
X1 As Variant, _
X2 As Variant, _
.
.
varargin As Variant)

See “Calling Conventions” on page 15-23 for more details and examples of the
standard mapping from MATLAB functions to COM class method calls.

Variant
All input and output arguments are typed as Variant, the default Visual
Basic data type. The Variant type can hold any of the basic Visual Basic
types, arrays of any type, and object references. See “Data Conversion” on
page 15-9 for details about the conversion of any basic type to and from
MATLAB data types.

In general, you can supply any Visual Basic type as an argument to a class
method, with the exception of Visual Basic User Defined Types (UDTs).

When you pass a simple Variant type as an output parameter, the called
method allocates the received data and frees the original contents of the
Variant. In this case it is sufficient to dimension each output argument as
a single Variant. When an object type (like an Excel Range) is passed as an
output parameter, the object reference is passed in both directions, and the
object’s Value property receives the data.

Examples of Passing Input and Output Parameters
The following examples show how to pass input and output parameters to the
builder component class methods in Visual Basic.

The first example is a function, foo, that takes two arguments and returns one
output argument. The foo function dispatches a call to a class method that
corresponds to a MATLAB function of the form function y = foo(x1,x2).

Function foo(x1 As Variant, x2 As Variant) As Variant

13-10

Calling the Methods of a Class Instance

Dim aClass As Object
Dim y As Variant

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,x1,x2)
foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

The second example rewrites the foo function as a subroutine:

Sub foo(Xout As Variant, X1 As Variant, X2 As Variant)
Dim aClass As Object

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,Xout,X1,X2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

13-11

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Calling a COM Object in a Visual C++ Program

In this section...

“Using the MATLAB® Builder™ NE Product to Create the Object” on page
13-12

“Using the Component in a Visual C++ Program” on page 13-13

Note You must choose a Microsoft compiler to compile and use any COM
object.

Using the MATLAB Builder NE Product to Create the
Object
Build the COM object as follows:

1 Start the MATLAB product.

2 Open the MATLAB Editor and create a file named adddoubles.m with
the following MATLAB code:

function z=adddoubles(x,y)
z=x+y;

3 In the MATLAB Command Window, issue the following command to open
the Deployment Tool:

deploytool

4 Create a project named mycomponent in any location you want.

5 Add adddoubles.m to the mycomponentclass folder. This means that the
MATLAB function, adddoubles, will be a method in mycomponentclass.

6 Click the icon in the Deployment Tool toolbar.

The builder generates a self-registering COM object that you can use in
your Visual C++ code.

13-12

Calling a COM Object in a Visual C++® Program

Using the Component in a Visual C++ Program
Use the COM object you have created as follows:

1 Create a Visual C++ program in a file named matlab_com_example.cpp
with the following code:

#include <iostream>

using namespace std;

// include the following files generated by MATLAB Builder NE

#include "mycomponent\src\mycomponent_idl.h"

#include "mycomponent\src\mycomponent_idl_i.c"

int main() {

// Initialize argument variables

VARIANT x, y, out1;

//Initialize the COM library

HRESULT hr = CoInitialize(NULL);

//Create an instance of the COM object you created

Imycomponentclass *pImycomponentclass;

hr=CoCreateInstance

(CLSID_mycomponentclass, NULL, CLSCTX_INPROC_SERVER,

IID_Imycomponentclass,(void **)&pImycomponentclass);

// Set the input arguments to the COM method

x.vt=VT_R8;

y.vt=VT_R8;

x.dblVal=7.3;

y.dblVal=1946.0;

// Access the method with arguments and receive the output out1

hr=(pImycomponentclass -> adddoubles(1,&out1,x,y));

// Print the output

cout << "The input values were " << x.dblVal << " and "

<< y.dblVal << ".\n";

cout << "The output of feeding the inputs into the adddoubles method is "

<< out1.dblVal << ".\n";

// Uninitialize COM

CoUninitialize();

return 0;

}

13-13

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

2 In the MATLAB Command Window, compile the program as follows:

mbuild matlab_com_example.cpp

When you run the executable, the program displays two numbers and their
sum, as returned by the COM object’s adddoubles.

13-14

Using a COM Component in a .NET Application

Using a COM Component in a .NET Application

In this section...

“Overview” on page 13-15

“Program Listings” on page 13-15

Overview
The following examples demonstrate the optimal fitting of a nonlinear function
to a set of data in both C# and Microsoft Visual Basic implementations.

Note in particular how memory is freed and allocated. Use these examples as
models when using COM components in your own .NET applications.

Program Listings
In matlabroot\toolbox\dotnetbuilder\Examples\
VS8\COM\CurveFitExample\:

C# Example
CurveFitCSharpApp\CurveFitApp.cs

Visual Basic Example
CurveFitVBApp\CurveFitApp.vb

13-15

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Adding Events to COM Objects

In this section...

“MATLAB Language Pragma” on page 13-16

“Using a Callback with a Microsoft® Visual Basic® Event” on page 13-17

MATLAB Language Pragma
The MATLAB Builder NE product supports events, or callbacks, through a
MATLAB language pragma. A pragma is a directive to the builder, beyond
what is conveyed in the MATLAB language itself. The pragma for adding
events is #event.

The MATLAB product interprets the %#event statement as a comment. But
when the builder encapsulates a function, the #event pragma tells the builder
that the function requires an outgoing interface and an event handler.

Note The #event pragma is supported only for COM components built with
MATLAB Builder NE. You can not use this feature with .NET components
created by MATLAB Builder NE or COM components built with the MATLAB
Builder EX product.

To use the #event pragma:

1 Write the code for a MATLAB function stub that serves as the prototype for
the event. This function stub is the event function.

2 Build the COM component as usual. Make sure that you specify the event
function you wrote in the MATLAB product as a method in the component
class.

3 In your application, add the code to implement the event handler (the event
handler belongs to the COM object created by the builder). The code for
the event handler should implement the event function, or function stub,
that you wrote in MATLAB.

13-16

Adding Events to COM Objects

When an encapsulated MATLAB function (now a method in a COM object in
your application) calls the event function, the call is dispatched to the event
handler in the application.

Some examples of how you might use callbacks in your code are

• To give the application periodic feedback during a long-running calculation
by an encapsulated MATLAB function. For example, if you have a task that
requires n iterations, you might signal an event to increment a progress
bar in the user interface on each iteration.

• To signal a warning during a calculation but continue execution of the task.

• To return intermediate results of a calculation to the user and continue
execution of the task.

Using a Callback with a Microsoft Visual Basic Event
The example in this topic shows how to use a callback in conjunction with a
Microsoft Visual Basic ProgressBar control.

The MATLAB function iterate runs through n iterations and fires an event
every inc iterations. When the function finishes, it returns a single output.
To simulate actually doing something, the sample code includes a pause
statement in the main loop so that the function waits for 1 second in each
iteration.

The sample includes MATLAB functions iterate.m and progress.m.

iterate.m

function [x] = iterate(n,inc)
%initialize x
x = 0;
% Run n iterations, callback every inc time
k = 0;
for i=1:n

k = k + 1;
if k == inc

progress(i);
k = 0;

end;

13-17

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

% Do some work on x...
x = x + 1;
% Pause for 1 second to simulate doing
% something
pause(1);

end;

progess.m

function progress(i)
%#event
i

The iterate function runs through n iterations and calls the progress
function every inc iterations, passing the current iteration number as an
argument. When this function is executed in MATLAB, the value of i appears
each time the progress function gets called.

Suppose you create a the builder component that has these two functions
included as class methods. For this example the component has a single class
named myclass. The resulting COM class has a method iterate and an
event progress.

To receive the event calls, implement a “listener” in the application. The
Visual Basic syntax for the event handler for this example is

Sub aClass_progress(ByVal i As Variant)

where aClass is the variable name used for your class instance. The ByVal
qualifier is used on all input parameters of an event function. To enable
the listening process, dimension the aClass variable with the WithEvents
keyword.

This example uses a simple Visual Basic form with three TextBox controls,
one CommandButton control, and one ProgressBar control. The first text box,
Text1, inputs the number of iterations, stored in the form variable N. The
second text box, Text2, inputs the callback increment, stored in the variable
Inc. The third text box, Text3, displays the output of the function when it
finishes executing. The command button, Command1, executes the iterate

13-18

Adding Events to COM Objects

method on your class when pressed. The progress bar control, ProgressBar1,
updates itself in response to the progress event.

'Form Variables
Private WithEvents aClass As myclass 'Class instance
Private N As Long 'Number of iterations
Private Inc As Long 'Callback increment
Private Sub Form_Load()
'When form is loaded, create new myclass instance

Set aClass = New myclass
'Initialize variables
N = 2
Inc = 1

End Sub
Private Sub Text1_Change()
'Update value of N from Text1 text whenever it changes

On Error Resume Next
N = CLng(Text1.Text)
If Err <> 0 Then N = 2
If N < 2 Then N = 2

End Sub
Private Sub Text2_Change()
'Update value of Inc from Text2 text whenever it changes

On Error Resume Next
Inc = CLng(Text2.Text)
If Err <> 0 Then Inc = 1
If Inc <= 0 Then Inc = 1

End Sub
Private Sub Command1_Click()
'Execute function whenever Execute button is clicked

Dim x As Variant
On Error GoTo Handle_Error
'Initialize ProgressBar
ProgressBar1.Min = 1
ProgressBar1.Max = N
Text3.Text = ""
'Iterate N times and call back at Inc intervals
Call aClass.iterate(1, x, CDbl(N), CDbl(Inc))
Text3.Text = Format(x)
Exit Sub

13-19

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Handle_Error:
MsgBox (Err.Description)

End Sub
Private Sub aClass_progress(ByVal i As Variant)
'Event handler. Called each time the iterate function
'calls the progress function. Progress bar is updated
'with the value passed in, causing the control to advance.

ProgressBar1.Value = i
End Sub

13-20

Passing Arguments

Passing Arguments

In this section...

“Overview” on page 13-21

“Creating and Using a varargin Array in Microsoft® Visual Basic®

Programs” on page 13-21

“Creating and Using varargout in Microsoft® Visual Basic® Programs” on
page 13-22

“Passing an Empty varargin From Microsoft® Visual Basic® Code” on page
13-23

Overview
When it encapsulates MATLAB functions, the MATLAB Builder NE product
adds the MATLAB function arguments to the argument list of the class
methods it creates. Thus, if a MATLAB function uses varargin and/or
varargout, the builder adds these arguments to the argument list of the
class method. They are added at the end of the argument list for input and
output arguments.

You can pass multiple arguments as a varargin array by creating a Variant
array, assigning each element of the array to the respective input argument.

See “Producing a COM Class” on page 15-23 for more information about
mapping of input and output arguments.

Creating and Using a varargin Array in Microsoft
Visual Basic Programs
The following example creates a varargin array to call a method
encapsulating a MATLAB function of the form y = foo(varargin).

The MWUtil class included in the MWComUtil utility library provides the
MWPack helper function to create varargin parameters.

Function foo(x1 As Variant, x2 As Variant, x3 As Variant, _
x4 As Variant, x5 As Variant) As Variant

13-21

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Dim aClass As Object
Dim v(1 To 5) As Variant
Dim y As Variant

On Error Goto Handle_Error
v(1) = x1
v(2) = x2
v(3) = x3
v(4) = x4
v(5) = x5
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,v)
foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

Creating and Using varargout in Microsoft Visual
Basic Programs
The next example processes a varargout argument as three separate
arguments. This function uses the MWUnpack function in the utility library.

The MATLAB function used is varargout = foo(x1,x2).

Sub foo(Xout1 As Variant, Xout2 As Variant, Xout3 As Variant, _
Xin1 As Variant, Xin2 As Variant)

Dim aClass As Object
Dim aUtil As Object
Dim v As Variant

On Error Goto Handle_Error
aUtil = CreateObject("MWComUtil.MWUtil")
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(3,v,Xin1,Xin2)
Call aUtil.MWUnpack(v,0,True,Xout1,Xout2,Xout3)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

13-22

Passing Arguments

End Sub

Passing an Empty varargin From Microsoft Visual
Basic Code
In MATLAB, varargin inputs to functions are optional, and may be present
or omitted from the function call. However, from Microsoft Visual Basic,
function signatures are more strict—if varargin is present among the
MATLAB function inputs, the VBA call must include varargin, even if you
want it to be empty. To pass in an empty varargin, pass the Null variant,
which is converted to an empty MATLAB cell array when passed.

Passing an Empty varargin From VBA Code
The following example illustrates how to pass the null variant in order to pass
an empty varargin:

Function foo(x1 As Variant, x2 As Variant, x3 As Variant, _
x4 As Variant, x5 As Variant) As Variant

Dim aClass As Object
Dim v(1 To 5) As Variant
Dim y As Variant

On Error Goto Handle_Error
v(1) = x1
v(2) = x2
v(3) = x3
v(4) = x4
v(5) = x5
aClass = CreateObject("mycomponent.myclass.1_0")

'Call aClass.foo(1,y,v)
Call aClass.foo(1,y,Null)

foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

13-23

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Using Flags to Control Array Formatting and Data
Conversion

In this section...

“Overview” on page 13-24

“Array Formatting Flags” on page 13-25

“Using Array Formatting Flags” on page 13-25

“Using Data Conversion Flags” on page 13-28

“Special Flags for Some Microsoft® Visual Basic® Types” on page 13-30

Overview
Generally, you should write your application code so that it matches the
arguments (input and output) of the MATLAB functions that are encapsulated
in the COM objects that you are using. The mapping of arguments from the
MATLAB product to Microsoft Visual Basic is fully described in MATLAB®

to COM VARIANT Conversion Rules on page 15-12 and COM VARIANT to
MATLAB® Conversion Rules on page 15-17.

In some cases it is not possible to match the two kinds of arguments exactly;
for example, when existing MATLAB code is used in conjunction with a
third-party product such as Microsoft Excel. For these and other cases, the
builder supports formatting and conversion flags that control how array data
is formatted in both directions (input and output).

When it creates a component, the builder includes a component property
named MWFlags. The MWFlags property is readable and writable.

The MWFlags property consists of two sets of constants: array formatting flags
and data conversion flags. Array formatting flags affect the transformation of
arrays, whereas data conversion flags deal with type conversions of individual
array elements.

13-24

Using Flags to Control Array Formatting and Data Conversion

Array Formatting Flags
The following tables provide a quick overview of how to use array formatting
flags to specify conversions for input and output arguments.

Name of Flag Possible Values of Flag Results of Conversion

mwArrayFormatMatrix
(default)

MATLAB matrix from general
Variant data.

mwArrayFormatCell MATLAB cell array from general
Variant data.

InputArrayFormat

Array data from an Excel range is coded in Visual Basic as an
array of Variant. Since MATLAB functions typically have matrix
arguments, using the default setting makes sense when you are
dealing with data from Excel.

mwArrayFormatAsIs Array of Variant

Converts arrays according to the default conversion rules listed in
MATLAB® to COM VARIANT Conversion Rules on page 15-12.

mwArrayFormatMatrix A Variant containing an array of
a basic type.

OutputArrayFormat

mwArrayFormatCell MATLAB cell array from general
Variant data.

AutoResizeOutput When this flag is set, the target range automatically resizes to fit
the resulting array. If this flag is not set, the target range must
be at least as large as the output array or the data is truncated.
Use this flag for Excel Range objects passed directly as output
parameters.

TransposeOutput Transposes all array output. Use this flag when dealing with an
encapsulated MATLAB function whose output is a one-dimensional
array. By default, the MATLAB product handles one-dimensional
arrays as 1-by-n matrices (that is, as row vectors). Change this
default with the TransposeOutput flag if you prefer column output.

Using Array Formatting Flags
To use the following example, make sure that you reference the MWComUtil
library in the current project:

13-25

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

1 Select Tools > References.

2 Click MWComUtil 7.5 Type Library.

Consider the following Microsoft Visual Basic function definition for foo:

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1(1 To 2, 1 To 2), var2 As Variant
Dim x(1 To 2, 1 To 2) As Double
Dim y1,y2 As Variant

On Error Goto Handle_Error
var1(1,1) = 11#
var1(1,2) = 12#
var1(2,1) = 21#
var1(2,2) = 22#
x(1,1) = 11
x(1,2) = 12
x(2,1) = 21
x(2,2) = 22
var2 = x
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y1,var1)
Call aClass.foo(1,y2,var2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

The example has two Variant variables, var1 and var2. These two variables
contain the same numerical data, but internally they are structured
differently; one is a 2-by-2 array of variant and the other is a 1-by-1 array of
variant. The variables are described in the following table.

13-26

Using Flags to Control Array Formatting and Data Conversion

Scenario var1 var2

Numerical data
11 12
21 22

11 12
21 22

Internal structure in
Visual Basic

2-by-2 array of Variant.
Each variant is a
1-by-1 array of Double.

1-by-1 Variant, which
contains a 2-by-2 array
of Double

Result of conversion by
the builder according
to the default data
conversion rules

2-by-2 cell array. Each
element is a 1-by-1
array of double.

2-by-2 matrix. Each
element is a Double.

The InputArrayFormat flag controls how the arrays are handled. In this
example, the value for the InputArrayFormat flag is the default, which is
mwArrayFormatMatrix. The default causes an array to be converted to a
matrix. See the table for the result of the conversion of var2.

To specify a cell array (instead of a matrix) as input to the function call, set
the InputArrayFormat flag to mwArrayFormatCell instead of the default.
Do this in this example by adding the following line after creating the class
and before the method call:

aClass .MWFlags.ArrayFormatFlags.InputArrayFormat =
mwArrayFormatCell

Setting the flag to mwArrayFormatCell causes all array input to the
encapsulated MATLAB function to be converted to cell arrays.

Modifying Output Format
Similarly, you can manipulate the format of output arguments using the
OutputArrayFormat flag. You can also modify array output with the
AutoResizeOutput and TransposeOutput flags.

Output Format in VBScript
When calling a COM object in VBScript you need to make sure that you set
MWFlags for the COM object to specify cell array for the output. Also, you

13-27

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

must use an enumeration (the enumeration value for a cell array is 2) to make
the specification (rather than specifying mwArrayFormatCell).

The following sample code shows how to accomplish this:

obj.MWFlags.ArrayFormatFlags.OutputArrayFormat = 2

Using Data Conversion Flags
Two data conversion flags, CoerceNumericToType and InputDateFormat,
govern how numeric and date types are converted from Visual Basic to
MATLAB.

To use the following example, make sure that you reference the MWComUtil
library in the current project:

1 Select Tools > References.

2 Click MWComUtil 7.5 Type Library.

This example converts var1 of type Variant/Integer to an int16 and var2 of
type Variant/Double to a double.

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1, var2 As Variant
Dim y As Variant

On Error Goto Handle_Error
var1 = 1
var2 = 2#
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y,var1,var2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

If the original MATLAB function expects doubles for both arguments, this
code might cause an error. One solution is to assign a double to var1, but
this may not be possible or desirable. As an alternative, you can set the

13-28

Using Flags to Control Array Formatting and Data Conversion

CoerceNumericToType flag to mwTypeDouble, causing the data converter to
convert all numeric input to double. To do this, place the following line after
creating the class and before calling the methods:

aClass .MWFlags.DataConversionFlags.CoerceNumericToType =
mwTypeDouble

The next example shows how to use the InputDateFormat flag, which controls
how the Visual Basic Date type is converted. The example sends the current
date and time as an input argument and converts it to a string.

Sub foo()
Dim aClass As mycomponent.myclass
Dim today As Date
Dim y As Variant

On Error Goto Handle_Error
today = Now
Set aClass = New mycomponent.myclass
aClass. MWFlags.DataConversionFlags.InputDateFormat =

mwDateFormatString
Call aClass.foo(1,y,today)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

The next example uses an MWArg object to modify the conversion flags for
one argument in a method call. In this case the first output argument (y1)
is coerced to a Date, and the second output argument (y2) uses the current
default conversion flags supplied by aClass.

Sub foo(y1 As Variant, y2 As Variant)
Dim aClass As mycomponent.myclass
Dim ytemp As MWArg

Dim today As Date

On Error Goto Handle_Error
today = Now
Set aClass = New mycomponent.myclass
Set ytemp = New MWArg

13-29

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

ytemp.MWFlags.DataConversionFlags.OutputAsDate = True
Call aClass.foo(2, ytemp, y2, today)
y1 = ytemp
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Special Flags for Some Microsoft Visual Basic Types
In general, you use the MWFlags class property to change specified behaviors
of the conversion from Microsoft Visual Basic Variant types to MATLAB
types, and vice versa. There are some exceptions — some types generated by
the builder have their own MWFlags property. When you use these particular
types, the method call behaves according to the settings of the type and not
of the class containing the method being called. The exceptions are for the
following types generated by the builder:

• MWStruct

• MWField

• MWComplex

• MWSparse

• MWArg

Note The MWArg class is supplied specifically for the case when a particular
argument needs different settings from the default class properties.

13-30

Using MATLAB® Global Variables in Microsoft® Visual Basic®

Using MATLAB Global Variables in Microsoft Visual Basic
Class properties allow an object to retain an internal state between method
calls.

Global variables are variables that are declared in the MATLAB product with
the global keyword. The builder automatically converts all global variables
shared by the MATLAB files that make up a class to properties on that class.

Properties are particularly useful when you have a large array containing
values that do not change often, but you need to operate on it frequently. In
this case, you can set the array once as a class property and operate on it
repeatedly without incurring the overhead of passing (and converting) the
data for passing to each method every time it is called.

The following example shows how to use a class property in a matrix
factorization class. The example develops a class that performs Cholesky, LU,
and QR factorizations on the same matrix. It stores the input matrix (coded
as A in MATLAB) as a class property so that it does not need to be passed
to the factorization routines.

Consider these three MATLAB files.

Cholesky.m

function [L] = Cholesky()
global A;
if (isempty(A))

L = [];
return;

end
L = chol(A);

LUDecomp.m

function [L,U] = LUDecomp()
global A;
if (isempty(A))

L = [];
U = [];

13-31

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

return;
end
[L,U] = lu(A);

QRDecomp.m

function [Q,R] = QRDecomp()
global A;
if (isempty(A))

Q = [];
R = [];
return;

end
[Q,R] = qr(A);

These three files share a common global variable A. Each function performs a
matrix factorization on A and returns the results.

To build the class:

1 Create a new MATLAB Builder NE project named mymatrix with a version
of 1.0.

2 Add a single class called myfactor to the component.

3 Add the above three MATLAB files to the class.

4 Build the component.

To test your application, make sure that you reference the library generated
by the builder in the current Visual Basic project:

1 Select Project > References in the Visual Basic main menu.

2 Click mymatrix 1.0 Type Library.

Use the following Visual Basic subroutine to test the myfactor class:

Sub TestFactor()
Dim x(1 To 2, 1 To 2) As Double
Dim C As Variant, L As Variant, U As Variant, _

13-32

Using MATLAB® Global Variables in Microsoft® Visual Basic®

Q As Variant, R As Variant
Dim factor As myfactor

On Error GoTo Handle_Error
Set factor = New myfactor
x(1, 1) = 2#
x(1, 2) = -1#
x(2, 1) = -1#
x(2, 2) = 2#
factor.A = x
Call factor.cholesky(1, C)
Call factor.ludecomp(2, L, U)
Call factor.qrdecomp(2, Q, R)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Run the subroutine, which does the following:

1 Creates an instance of the myfactor class

2 Assigns a double matrix to the property A

3 Calls the three factorization methods

13-33

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Blocking Execution of a Console Application That Creates
Figures

In this section...

“MCRWaitForFigures” on page 13-34

“Using MCRWaitForFigures to Block Execution” on page 13-35

MCRWaitForFigures
The MATLAB Builder NE product adds a MCRWaitForFigures method to each
class in the COM components that it creates. MCRWaitForFigures takes no
arguments. Your application can call MCRWaitForFigures any time during
execution.

The purpose of MCRWaitForFigures is to block execution of a calling program
as long as figures created in encapsulated MATLAB code are displayed.
Typically you use MCRWaitForFigures when:

• There are one or more figures open that were created by an instance of a
COM object created by the builder.

• The method that displays the graphics requires user input before
continuing.

• The method that calls the figures was called from main() in a console
program.

When MCRWaitForFigures is called, execution of the calling program is
blocked if any figures created by the calling object remain open.

Caution Be careful when calling the MCRWaitForFigures method. Calling
this method from a Microsoft Visual Basic UI or from an interactive program
such as Microsoft Excel can hang the application. This method should be
called only from console-based programs.

13-34

Blocking Execution of a Console Application That Creates Figures

Using MCRWaitForFigures to Block Execution
The following example illustrates using MCRWaitForFigures from a Microsoft
Visual C++ console application. The example uses a COM object created by
the builder; the object encapsulates MATLAB code that draws a simple plot.

1 Create a work folder for your source code. In this example, the folder is
D:\work\plotdemo.

2 Create the following MATLAB file in this folder:

drawplot.m

function drawplot()
plot(1:10);

3 Use the builder to create a COM component with the following properties:

Component name plotdemo

Class name plotdemoclass

Version 1.0

Note Instead of using the Deployment Tool, you can create the component by
issuing the following command at the MATLAB prompt:

mcc -d 'D:\work\plotdemo\src' -v -B

'ccom:plotdemo,plotdemoclass,1.0'

'D:\Work\plotdemo\drawplot.m'

4 Create a Visual C++ program in a file named runplot.cpp with the following
code:

// Include the following files generated by
// MATLAB Builder NE:
#include "src\plotdemo_idl.h"
#include "src\plotdemo_idl_i.c"

13-35

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

int main()
{

// Initialize the COM library
HRESULT hr = CoInitialize(NULL);
// Create an instance of the COM object you created
Iplotdemoclass* pIplotdemoclass = NULL;
hr = CoCreateInstance(CLSID_plotdemoclass, NULL,

CLSCTX_INPROC_SERVER, IID_Iplotdemoclass,
(void **)&pIplotdemoclass);

// Call the drawplot method
hr = pIplotdemoclass->drawplot();
// Block execution until user dismisses the figure window
hr = pIplotdemoclass->MCRWaitForFigures();
// Uninitialize COM
CoUninitialize();
return 0;

}

5 In the MATLAB Command Window, build the application as follows:

mbuild runplot.cpp

When you run the application, the program displays a plot from 1 to 10 in a
MATLAB figure window. The application ends when you dismiss the figure.

Note To see what happens without the call to MCRWaitForFigures. comment
out the call, rebuild the application, and run it. In this case, the figure is
drawn and is immediately destroyed as the application exits.

13-36

MCR Run-Time Options

MCR Run-Time Options
When you roll-out a COM component to end users, there are times when you
need to specify MCR options to create a log file or improve performance.

Pass these options with either mcc or deploytool.

What MCR Options are Supported for COM?

• -nojvm— Launches the MCR without a Java Virtual Machine (JVM). This
can improve performance of deployed applications, in some cases.

• -logfile — Allows you to specify a log file name.

How Do I Specify MCR Options?
You do this by invoking the following MWUtil API calls, detailed with
examples in “Utility Library for Microsoft COM Components”:

• Sub MWInitApplicationWithMCROptions(pApp As Object,
[mcrOptionList])

• Function IsMCRJVMEnabled() As Boolean

• Function IsMCRInitialized() As Boolean

13-37

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Sharing an MCR Instance in COM or Java Applications

In this section...

“What Is a Singleton MCR?” on page 13-38

“Advantages and Disadvantages of Using a Singleton” on page 13-38

“Which Products Support Singleton MCR and How Do I Create a Singleton?”
on page 13-39

What Is a Singleton MCR?
You create an instance of the MCR that can be shared (and reused) among all
subsequent class instances within a component. This is commonly called a
shared MCR instance or a Singleton MCR.

Advantages and Disadvantages of Using a Singleton
In most cases, a singleton MCR will provide many more advantages than
disadvantages. Following are examples of when you might and might not
create a shared MCR instance.

When You Should Use a Singleton
If you have multiple users running from a specific instance of MATLAB, using
a singleton will most likely:

• Utilize system memory more efficiently

• Decrease MCR start-up or initialization time

• Promote reuse of your application code base

When You Might Avoid Using a Singleton
Situations where using a singleton may not benefit you include:

• Running applications with a large number of global variables. This can
promote crosstalk which can eventually impact performance.

• Your installation runs many different versions of MATLAB, for testing
purposes.

13-38

Sharing an MCR Instance in COM or Java Applications

• Your installation has a relatively small number of users and is not overly
concerned with performance.

Which Products Support Singleton MCR and How Do
I Create a Singleton?
Singleton MCR is only supported by the following products on these specific
targets:

Product Target supported by
Singleton MCR

Create a Singleton MCR
by....

MATLAB Builder EX COM component Default behavior for target is
Singleton MCR. You do not
need to perform other steps.

MATLAB Builder NE .NET assembly Default behavior for target is
Singleton MCR. You do not
need to perform other steps.

MATLAB Builder NE COM component

MATLAB Builder JA Java component 1 Using deploytool, Select the

Actions () button.

2 Click Settings.

3 On the Advanced tab,
select the option Object
instances share MCR.

13-39

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Obtaining Registry Information
When programming with COM components, you might need details about a
component. You can use componentinfo, which is a MATLAB function, to
query the system registry for details about any installed MATLAB Builder
NE component.

This example queries the registry for a component named mycomponent and
a version of 1.0. This component has four methods: mysum, randvectors,
getdates, and myprimes; two properties: m and n; and one event: myevent.

Info = componentinfo('mycomponent', 1, 0)

Info =

Name: 'mycomponent'
TypeLib: 'mycomponent 1.0 Type Library'

LIBID: '{3A14AB34-44BE-11D5-B155-00D0B7BA7544}'
MajorRev: 1
MinorRev: 0
FileName: 'D:\Work\ mycomponent\distrib\mycomponent_1_0.dll'
Interfaces: [1x1 struct]
CoClasses: [1x1 struct]

Info.Interfaces

ans =

Name: 'Imyclass'
IID: '{3A14AB36-44BE-11D5-B155-00D0B7BA7544}'

Info.CoClasses

ans =

Name: 'myclass'
CLSID: '{3A14AB35-44BE-11D5-B155-00D0B7BA7544}'
ProgID: 'mycomponent.myclass.1_0'

VerIndProgID: 'mycomponent.myclass'
InprocServer32:'D:\Work\mycomponent\distrib\mycomponent_1_0.dll'

13-40

Obtaining Registry Information

Methods: [1x4 struct]
Properties: {'m', 'n'}

Events: [1x1 struct]

Info.CoClasses.Events.M

ans =

function myevent(x, y)

Info.CoClasses.Methods

ans =

1x4 struct array with fields:
IDL
M
C
VB

Info.CoClasses.Methods.M

ans =

function [y] = mysum(varargin)

ans =

function [varargout] = randvectors()

ans =

function [x] = getdates(n, inc)

ans =

function [p] = myprimes(n)

The returned structure contains fields corresponding to the most important
information from the registry and type library for the component.

13-41

13 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Handling Errors During a Method Call
If your application generates an error while creating a class instance or
during a class method call, the current procedure creates an exception.

Microsoft Visual Basic provides an exception handling capability through
the On Error Goto <label> statement, in which the program execution
jumps to <label> when an error occurs. (<label> must be located in the
same procedure as the On Error Goto statement.) All errors in Visual Basic
are handled this way, including errors within the MATLAB code that you
have encapsulated into a COM object. An exception creates a Visual Basic
ErrObject object in the current context in a variable called Err.

See the Microsoft Visual Basic documentation for a detailed discussion on
Visual Basic error handling.

13-42

14

Using COM Components
in Microsoft Visual Basic
Applications

• “Magic Square Example” on page 14-2

• “Creating an Excel Add-in: Spectral Analysis Example” on page 14-9

• “Univariate Interpolation Example” on page 14-25

• “Matrix Calculator Example” on page 14-33

• “Curve Fitting Example” on page 14-44

• “Bouncing Ball Simulation Example” on page 14-52

14 Using COM Components in Microsoft® Visual Basic® Applications

Magic Square Example

In this section...

“Example Overview” on page 14-2

“Creating the MATLAB File” on page 14-2

“Using the Deployment Tool to Create and Build the Project” on page 14-3

“Creating the Microsoft® Visual Basic® Project” on page 14-3

“Creating the User Interface” on page 14-4

“Creating the Executable in Microsoft® Visual Basic®” on page 14-7

“Testing the Application” on page 14-7

“Packaging the Component” on page 14-7

Example Overview
This example uses a simple MATLAB file that takes a single input and creates
a magic square of that size. It then builds a COM component using this
MATLAB file as a class method. Finally, the example shows the integration
of this component into a standalone Microsoft Visual Basic application. The
application accepts the magic square size as input and displays the matrix in
a ListView control box.

Note ListView is a Windows Form control that displays a list of items with
icons. You can use a list view to create a user interface like the right pane
of Windows Explorer. See the MSDN Library for more information about
Windows Form controls.

Creating the MATLAB File
To get started, create the MATLAB file mymagic.m containing the following
code:

function y = mymagic(x)
y = magic(x);

14-2

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vboriWinFormsControls.asp

Magic Square Example

Using the Deployment Tool to Create and Build the
Project

1 Specify a COM component as follows:

a While in MATLAB, issue the following command to open Deployment Tool:

deploytool

b Create a project with the following settings:

Setting Value

Project name magicdemo

Class name magicdemoclass

Project folder The name of your work folder followed by the
component name. In this example, that is
D:\Work\MagicSquareExample\magicdemo.

Generate Verbose
Output

Selected

c Locate your work folder and navigate to the MagicDemoComp folder,
which contains the MATLAB file for the makesquare function. Add the
makesquare.m file to the project.

2 Build the component by clicking the button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output pane of
the Deployment Tool. The files that are needed for the component are copied
to two newly created folders, src and distrib, in the magicdemo folder. A
copy of the build log is placed in the src folder.

Creating the Microsoft Visual Basic Project

Note This procedure assumes that you are using Microsoft Visual Basic 6.0.

14-3

14 Using COM Components in Microsoft® Visual Basic® Applications

1 Start Visual Basic.

2 In the New Project dialog box, select Standard EXE as the project type and
click Open. This creates a new Visual Basic project with a blank form.

3 From the main menu, select Project > References to open the Project
References dialog box.

4 Select magicdemo 1.0 Type Library from the list of available components
and click OK.

5 Returning to the Visual Basic main menu, select Project > Components
to open the Components dialog box.

6 Select Microsoft Windows Common Controls 6.0 and click OK. You will
use the ListView control from this component library.

Creating the User Interface
After you create the project, add a series of controls to the blank form to create
a form with the following settings.

Control Type
Control
Name Properties Purpose

Frame Frame1 Caption = Magic Squares
Demo

Groups controls

Label Label1 Caption = Magic Square
Size

Labels the magic square edit
box.

TextBox edtSize Accepts input of magic square
size.

CommandButton btnCreate Caption = Create When pressed, creates a new
magic square with current size.

ListView lstMagic GridLines = True

LabelEdit = lvwManual

View = lvwReport

Displays the magic square.

14-4

Magic Square Example

When the form and controls are complete, add the following code to the form.
This code references the control and variable names listed above. If you have
given different names for any of the controls or any variable, change this code
to reflect those differences.

Private Size As Double 'Holds current matrix size

Private theMagic As magicdemo.magicdemoclass 'magic object instance

Private Sub Form_Load()

'This function is called when the form is loaded.

'Creates a new magic class instance.

On Error GoTo Handle_Error

Set theMagic = New magicdemo.magicdemoclass

Size = 0

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub btnCreate_Click()

'This function is called when the Create button is pressed.

'Calls the mymagic method, and displays the magic square.

Dim y As Variant

If Size <= 0 Or theMagic Is Nothing Then Exit Sub

On Error GoTo Handle_Error

Call theMagic.mymagic(1, y, Size)

Call ShowMatrix(y)

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub edtSize_Change()

'This function is called when ever the contents of the

'Text box change. Sets the current value of Size.

On Error Resume Next

Size = CDbl(edtSize.Text)

If Err <> 0 Then

Size = 0

End If

14-5

14 Using COM Components in Microsoft® Visual Basic® Applications

End Sub

Private Sub ShowMatrix(y As Variant)

'This function populates the ListView with the contents of

'y. y is assumed to contain a 2D array.

Dim n As Long

Dim i As Long

Dim j As Long

Dim nLen As Long

Dim Item As ListItem

On Error GoTo Handle_Error

'Get array size

If IsArray(y) Then

n = UBound(y, 1)

Else

n = 1

End If

'Set up Column headers

nLen = lstMagic.Width / 5

Call lstMagic.ListItems.Clear

Call lstMagic.ColumnHeaders.Clear

Call lstMagic.ColumnHeaders.Add(, , "", nLen, lvwColumnLeft)

For i = 1 To n

Call lstMagic.ColumnHeaders.Add(, , _

"Column " & Format(i), nLen, lvwColumnLeft)

Next

'Add array contents

If IsArray(y) Then

For i = 1 To n

Set Item = lstMagic.ListItems.Add(, , "Row " & Format(i))

For j = 1 To n

Call Item.ListSubItems.Add(, , Format(y(i, j)))

Next

Next

Else

Set Item = lstMagic.ListItems.Add(, , "Row 1")

Call Item.ListSubItems.Add(, , Format(y))

End If

Exit Sub

14-6

Magic Square Example

Handle_Error:

MsgBox (Err.Description)

End Sub

Creating the Executable in Microsoft Visual Basic
After the code is complete, create the standalone executable magic.exe:

1 Reopen the project by selecting File > Save Project from the main menu.
Accept the default name for the main form and enter magic.vbp for the
project name.

2 Return to the File menu. Select File > Make magic.exe to create the
finished product.

Testing the Application
You can run the magic.exe executable as you would any other program.
When the main dialog box opens, enter a positive number in the input box
and click Create. A magic square of the input size appears.

The ListView control automatically implements scrolling if the magic square
is larger than 4-by-4.

Packaging the Component
As a final step, package the magicdemo component and all supporting libraries
into a self-extracting executable. Then anyone can install the package on
another computer, in particular a computer without MATLAB installed, and
use the magicdemo application.

To package the component:

1 Return to the Deployment Tool window and open the magicdemo project. If
necessary, type deploytool in the Command Window.

2 Click the button in the toolbar.

The Deployment Tool creates the magicdemo_pkg.exe self-extracting
executable.

14-7

14 Using COM Components in Microsoft® Visual Basic® Applications

To install the component onto another computer, copy the magicdemo_pkg.exe
package to that machine, run magicdemo_pkg.exe from a command prompt,
and follow the instructions.

14-8

Creating an Excel® Add-in: Spectral Analysis Example

Creating an Excel Add-in: Spectral Analysis Example

In this section...

“Example Overview” on page 14-9

“Building the Component” on page 14-9

“Integrating the Component with VBA” on page 14-11

“Creating the Microsoft® Visual Basic® Form” on page 14-13

“Adding the Spectral Analysis Menu Item to Microsoft® Excel®” on page
14-19

“Saving the Add-in” on page 14-20

“Testing the Add-in” on page 14-20

“Packaging and Distributing the Add-in” on page 14-23

Example Overview
This example shows how to create a comprehensive Microsoft Excel add-in to
perform spectral analysis. It requires knowledge of Microsoft Visual Basic
forms and controls, as well as Excel workbook events. See the Visual Basic
documentation included with Excel for a complete discussion of these topics.

The example creates an Excel add-in that performs a fast Fourier transform
(FFT) on an input data set located in a designated worksheet range. The
function returns the FFT results, an array of frequency points, and the power
spectral density of the input data. It places these results into ranges you
indicate in the current worksheet. You can also optionally plot the power
spectral density.

You develop the function so that you can invoke it from the Excel Tools menu
and can select input and output ranges through a graphical user interface
(GUI).

Building the Component
Your component will have one class with the following two methods:

14-9

14 Using COM Components in Microsoft® Visual Basic® Applications

• The computefft method computes the FFT and power spectral density of
the input data and computes a vector of frequency points based on the
length of the data entered and the sampling interval.

• The plotfft method performs the same operations as computefft, but
also plots the input data and the power spectral density in a MATLAB
figure window.

The MATLAB code for these two methods resides in two MATLAB files,
computefft.m and plotfft.m, as shown:

computefft.m:
function [fftdata, freq, powerspect] =

computefft(data, interval)
if (isempty(data))

fftdata = [];
freq = [];
powerspect = [];
return;

end
if (interval <= 0)

error('Sampling interval must be greater then zero');
return;

end
fftdata = fft(data);
freq = (0:length(fftdata)-1)/(length(fftdata)*interval);
powerspect = abs(fftdata)/(sqrt(length(fftdata)));

plotfft.m:

function [fftdata, freq, powerspect] = plotfft(data, interval)
[fftdata, freq, powerspect] = computefft(data, interval);
len = length(fftdata);
if (len <= 0)

return;
end
t = 0:interval:(len-1)*interval;
subplot(2,1,1), plot(t, data)
xlabel('Time'), grid on
title('Time domain signal')

14-10

Creating an Excel® Add-in: Spectral Analysis Example

subplot(2,1,2), plot(freq(1:len/2), powerspect(1:len/2))
xlabel('Frequency (Hz)'), grid on
title('Power spectral density')

To build the component:

1 Start deploytool.

2 Create a new project with these settings:

• Project name: Fourier

• Class name: Fourier

3 Add the computefft.m and plotfft.m MATLAB files to the project.

4 Save the project.

5 Click the button in the toolbar to create the component.

Integrating the Component with VBA
The next task is to implement the necessary VBA code to integrate the
component into Excel.

To open Excel and select the libraries you need to develop the add-in:

1 Start Excel.

2 From the Excel main menu, select Tools > Macro > Visual Basic Editor to
open the Visual Basic Editor.

3 Select Tools > References to open the Project References dialog box.

4 Select Fourier 1.0 Type Library andMWComUtil 7.5 Type Library.

Creating the Main VBA Code Module
The add-in requires some initialization code and some global variables to
hold the application’s state between function invocations. To achieve this,
implement a Visual Basic code module to manage these tasks, as follows:

14-11

14 Using COM Components in Microsoft® Visual Basic® Applications

1 Right-click VBAProject in the Project window and select Insert > Module.

A new module appears under Modules in the VBA Project.

2 In the module’s property page, set the Name property to FourierMain.

3 Enter the following code in the FourierMain module:

' FourierMain - Main module stores global state of controls
' and provides initialization code
'
'Global instance of Fourier object
Public theFourier As Fourier.Fourier
'Global instance of MWComplex to accept FFT
Public theFFTData As MWComplex
'Input data range
Public InputData As Range
'Sampling interval
Public Interval As Double
'Output frequency data range
Public Frequency As Range
'Output power spectral density range
Public PowerSpect As Range
'Holds the state of plot flag
Public bPlot As Boolean
'Global instance of MWUtil object
Public theUtil as MWUtil
'Module-is-initialized flag
Public bInitialized As Boolean
Private Sub LoadFourier()
'Initializes globals and Loads the Spectral Analysis form

Dim MainForm As frmFourier
On Error GoTo Handle_Error
Call InitApp
Set MainForm = New frmFourier
Call MainForm.Show
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

14-12

Creating an Excel® Add-in: Spectral Analysis Example

Private Sub InitApp()
'Initializes classes and libraries. Executes once
'for a given session of Excel

If bInitialized Then Exit Sub
On Error GoTo Handle_Error
If theFourier Is Nothing Then

Set theFourier = New Fourier.Fourier
End If
If theFFTData Is Nothing Then

Set theFFTData = New MWComplex
End If
bInitialized = True
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Creating the Microsoft Visual Basic Form
The next task is to develop a user interface for your add-in using the Microsoft
Visual Basic editor. Follow these steps to create a new user form and populate
it with the necessary controls:

1 Right-click VBAProject in the Project window and select
Insert > UserForm.

A new form appears under Forms in the VBA Project.

2 In the form’s property page, set the Name property to frmFourier and the
Caption property to Spectral Analysis.

3 Add a series of controls to the blank form to complete the dialog box, as
summarized in the following table:

Control Type Control Name Properties Purpose

Frame Frame1 Caption = Input
Data

Groups all input controls.

Label Label1 Caption = Input
Data:

Labels RefEdit for input
data.

14-13

14 Using COM Components in Microsoft® Visual Basic® Applications

Control Type Control Name Properties Purpose

RefEdit refedtInput Selects range for input
data.

Label Label2 Caption =
Sampling
Interval

Labels text box for
sampling interval.

TextBox edtSample Specifies the sampling
interval.

CheckBox chkPlot Caption = Plot
time domain
Signal and
Power Spectral
Density

Plots input data and
power spectral density.

Frame Frame2 Caption = Output
Data

Groups all output
controls.

Label Label3 Caption =
Frequency:

Labels RefEdit for
frequency output.

RefEdit refedtFreq Selects output range for
frequency points.

Label Label4 Caption = FFT -
Real Part:

Labels RefEdit for real
part of FFT.

RefEdit refedtReal Selects output range for
real part of FFT of input
data.

Label Label5 Caption = FFT -
Imaginary Part:

Labels RefEdit for
imaginary part of FFT.

RefEdit refedtImag Selects output range for
imaginary part of FFT of
input data.

Label Label6 Caption =
Power Spectral
Density

Labels RefEdit for power
spectral density.

14-14

Creating an Excel® Add-in: Spectral Analysis Example

Control Type Control Name Properties Purpose

RefEdit refedtPowSpect Selects the output range
for power spectral density
of input data.

CommandButton btnOK Caption = OK

Default = True

Executes the function and
closes the dialog box.

CommandButton btnCancel Caption = Cancel

Cancel = True

Closes the dialog box
without executing the
function.

The following figure shows the resulting layout.

14-15

14 Using COM Components in Microsoft® Visual Basic® Applications

4 When the form and controls are complete, right-click anywhere in the form
and View Code. The following code listing shows the code to implement.
Note that this code references the control and variable names listed in the
previous table. If you have renamed any of the controls or any global variable,
change this code to reflect those differences.

'

'frmFourier Event handlers

'

Private Sub UserForm_Activate()

'UserForm Activate event handler. This function gets called before

'showing the form, and initializes all controls with values stored

'in global variables.

14-16

Creating an Excel® Add-in: Spectral Analysis Example

On Error GoTo Handle_Error

If theFourier Is Nothing Or theFFTData Is Nothing Then Exit Sub

'Initialize controls with current state

If Not InputData Is Nothing Then

refedtInput.Text = InputData.Address

End If

edtSample.Text = Format(Interval)

If Not Frequency Is Nothing Then

refedtFreq.Text = Frequency.Address

End If

If Not IsEmpty (theFFTData.Real) Then

If IsObject(theFFTData.Real) And TypeOf theFFTData.Real Is Range Then

refedtReal.Text = theFFTData.Real.Address

End If

End If

If Not IsEmpty (theFFTData.Imag) Then

If IsObject(theFFTData.Imag) And TypeOf theFFTData.Imag Is Range Then

refedtImag.Text = theFFTData.Imag.Address

End If

End If

If Not PowerSpect Is Nothing Then

refedtPowSpect.Text = PowerSpect.Address

End If

chkPlot.Value = bPlot

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub btnCancel_Click()

'Cancel button click event handler. Exits form without computing fft

'or updating variables.

Unload Me

End Sub

Private Sub btnOK_Click()

'OK button click event handler. Updates state of all variables from controls

'and executes the computefft or plotfft method.

Dim R As Range

If theFourier Is Nothing Or theFFTData Is Nothing Then GoTo Exit_Form

14-17

14 Using COM Components in Microsoft® Visual Basic® Applications

On Error Resume Next

'Process inputs

Set R = Range(refedtInput.Text)

If Err <> 0 Then

MsgBox ("Invalid range entered for Input Data")

Exit Sub

End If

Set InputData = R

Interval = CDbl(edtSample.Text)

If Err <> 0 Or Interval <= 0 Then

MsgBox ("Sampling interval must be greater than zero")

Exit Sub

End If

'Process Outputs

Set R = Range(refedtFreq.Text)

If Err = 0 Then

Set Frequency = R

End If

Set R = Range(refedtReal.Text)

If Err = 0 Then

theFFTData.Real = R

End If

Set R = Range(refedtImag.Text)

If Err = 0 Then

theFFTData.Imag = R

End If

Set R = Range(refedtPowSpect.Text)

If Err = 0 Then

Set PowerSpect = R

End If

bPlot = chkPlot.Value

'Compute the fft and optionally plot power spectral density

If bPlot Then

Call theFourier.plotfft(3, theFFTData, Frequency, PowerSpect,_

InputData, Interval)

Else

Call theFourier.computefft(3, theFFTData, Frequency, PowerSpect,_

InputData, Interval)

End If

GoTo Exit_Form

14-18

Creating an Excel® Add-in: Spectral Analysis Example

Handle_Error:

MsgBox (Err.Description)

Exit_Form:

Unload Me

End Sub

Adding the Spectral Analysis Menu Item to Microsoft
Excel
The last task in the integration process is to add a menu item to Microsoft
Excel so that you can invoke the tool from the Excel Tools menu. To
do this you add event handlers for the workbook’s AddinInstall and
AddinUninstall events; these are events that install and uninstall menu
items. The menu item calls the LoadFourier function in the FourierMain
module.

To implement the menu item:

1 Right-click ThisWorkbook in the Visual Basic project window and select
View Code.

2 Add the following code to the ThisWorkbook object:

Private Sub Workbook_AddinInstall()

'Called when Addin is installed

Call AddFourierMenuItem

End Sub

Private Sub Workbook_AddinUninstall()

'Called when Addin is uninstalled

Call RemoveFourierMenuItem

End Sub

Private Sub AddFourierMenuItem()

Dim ToolsMenu As CommandBarPopup

Dim NewMenuItem As CommandBarButton

'Remove if already exists

Call RemoveFourierMenuItem

'Find Tools menu

Set ToolsMenu = Application.CommandBars(1).FindControl(ID:=30007)

14-19

14 Using COM Components in Microsoft® Visual Basic® Applications

If ToolsMenu Is Nothing Then Exit Sub

'Add Spectral Analysis menu item

Set NewMenuItem = ToolsMenu.Controls.Add(Type:=msoControlButton)

NewMenuItem.Caption = "Spectral Analysis..."

NewMenuItem.OnAction = "LoadFourier"

End Sub

Private Sub RemoveFourierMenuItem()

Dim CmdBar As CommandBar

Dim Ctrl As CommandBarControl

On Error Resume Next

'Find tools menu and remove Spectral Analysis menu item

Set CmdBar = Application.CommandBars(1)

Set Ctrl = CmdBar.FindControl(ID:=30007)

Call Ctrl.Controls("Spectral Analysis...").Delete

End Sub

Saving the Add-in
Name the add-in Spectral Analysis and follow these steps to save it:

1 From the Excel main menu, select File > Properties.

The Workbook Properties dialog box opens.

2 Click the Summary tab and enter Spectral Analysis as the workbook title.

3 Click OK to save the edits.

4 Select File > Save As from the Excel main menu.

5 Select Microsoft Excel Add-In (*.xla) as the file type.

6 Enter Fourier.xla as the file name.

7 Click Save to save the add-in.

Testing the Add-in
Before distributing the add-in, test it with a sample problem. Spectral
analysis is commonly used to find the frequency components of a signal
buried in a noisy time domain signal. In this example you will create a data

14-20

Creating an Excel® Add-in: Spectral Analysis Example

representation of a signal containing two distinct components and add to it a
random component. This data along with the output will be stored in columns
of an Excel worksheet, and you will plot the time-domain signal along with
the power spectral density.

To create the test problem:

1 Start a new Excel session with a blank workbook.

2 Select Tools > Add-Ins from the main menu.

3 When the Add-Ins dialog box opens, click Browse.

4 Browse to the Fourier.xla file and click OK. The Spectral Analysis
add-in appears in the available Add-Ins list and is selected.

5 Click OK to load the add-in.

This add-in installs a menu item under the Excel Tools menu. You can
display the Spectral Analysis GUI by selecting Tools > Spectral Analysis.

Before invoking the add-in, create some data, in this case a signal with
components at 15 and 40 Hz. Sample the signal for 10 seconds at a sampling
rate of 0.01 second. Put the time points into column A and the signal points
into column B.

Creating the Data

1 Enter 0 for cell A1 in the current worksheet.

2 Click cell A2 and type the formula = A1 + 0.01.

3 Drag the formula in cell A2 down the column to cell A1001.

This procedure fills the range A1:A1001 with the interval 0 to 10
incriminated by 0.01.

4 Click cell B1 and type the formula SIN(2*PI()*15*A1) +
SIN(2*PI()*40*A1) + RAND().

14-21

14 Using COM Components in Microsoft® Visual Basic® Applications

5 Repeat the drag procedure to copy this formula to all cells in the range
B1:B1001.

Running the Test
Using the column of data (column B), test the add-in as follows:

1 Select Tools > Spectral Analysis from the main menu.

2 Click Input Data.

3 Click the B1:B1001 range from the worksheet, or type this address into
Input Data.

4 Click the Sampling Interval box and type 0.01.

5 Click Plot time domain signal and power spectral density.

6 Enter C1:C1001 for frequency output. Similarly, enter D1:D1001, E1:E1001,
and F1:F1001 for the FFT real and imaginary parts, and spectral density.

7 Click OK to run the analysis.

The following figure shows the output.

14-22

Creating an Excel® Add-in: Spectral Analysis Example

The power spectral density reveals the two signals at 15 and 40 Hz.

Packaging and Distributing the Add-in
As a final step, package the add-in, the COM component, and all supporting
libraries into a self-extracting executable. This package can be installed onto
other computers that need to use the Spectral Analysis add-in.

To package and distribute the add-in:

14-23

14 Using COM Components in Microsoft® Visual Basic® Applications

1 Return to the Deployment Tool and open the Fourier project. (If necessary run
the deploytool command in the MATLAB product to reopen the Deployment
Tool.)

2 Click the button in the toolbar.

The builder creates the Fourier_pkg.exe self-extracting executable.

3 To install this add-in onto another computer, copy the Fourier_pkg.exe
package to that machine, run it from a command prompt, and follow the
instructions.

14-24

Univariate Interpolation Example

Univariate Interpolation Example

In this section...

“Example Overview” on page 14-25

“Using the Deployment Tool to Create and Build the Component” on page
14-25

“Using the Component in Microsoft® Visual Basic®” on page 14-26

“Creating the Microsoft® Visual Basic® Form” on page 14-27

Example Overview
This example is created using the Akima’s Univariate Interpolation example
posted by N. Shyamsundar on the MathWorks Web site. You can download the
original MATLAB file from http://www.mathworks.com/matlabcentral/.
Search for COM Builder Example: Univariate Interpolation.

This example shows you how to create the COM component using the
MATLAB Builder NE product and how to use this COM component in
external Microsoft Visual Basic code independent of the MATLAB product.

Using the Deployment Tool to Create and Build the
Component

1 At the MATLAB command prompt, change folders to your work folder.

2 Open the Deployment Tool window.

deploytool

3 Create a project with the following settings:

Setting Value

Project name UnivariateInterp

Class name Interp

14-25

http://www.mathworks.com/matlabcentral/

14 Using COM Components in Microsoft® Visual Basic® Applications

Setting Value

Project folder The name of your work folder followed by the Project
name.

Generate Verbose
Output

Selected

4 Locate your work folder and navigate to the UnivariateInterp folder, and
add the MATLAB file to the project.

5 Build the component by clicking the button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool. The files that are needed for the component
are copied to two newly created folders, src and distrib, in the
UnivariateInterp folder. A copy of the build log is placed in the src folder.

Using the Component in Microsoft Visual Basic
You can call the component from any application that supports COM.

To create a Microsoft Visual Basic project and add references to the necessary
libraries:

1 Start Visual Basic.

2 Create a new Standard EXE project.

3 Select Project > References.

4 Ensure that the following libraries appear:

UnivariateInterp 1.0 Type Library

MWComUtil 7.5 Type Library

14-26

Univariate Interpolation Example

Tip If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page 15-4
for information on this process.

Creating the Microsoft Visual Basic Form
The next step creates a front end or a Microsoft Visual Basic form for the
application. Your application receives data from the user through this form.

To create a new user form and populate it with the necessary controls.

1 Select Projects > Component. Alternatively, press Ctrl+T.

2 Ensure thatMicrosoft Windows Common Controls 6.0 is selected.

You will use the ListView control from this component library.

3 Add a series of controls to the blank form to create an interface using the
properties shown in the following table.

Control Type Control Name Properties Purpose

Form frmInterp Caption = Univariate
Interpolation

Container for all
components

Label lblDataCount Caption = Number of Data
Points

Labels the text box
txtNumDataPts

TextBox txtNumDataPts Text = Number of original data
points

Label lblInterp Caption = Number of
Interpolation Points

Labels the text box
txtInterp

TextBox txtInterp Text = Number of points over
which to interpolate

Label lblPlot Caption = Would you like to
plot the data?

Labels the check box
chkPlot

14-27

14 Using COM Components in Microsoft® Visual Basic® Applications

Control Type Control Name Properties Purpose

CheckBox chkPlot When selected, a
message is sent to the
COM component to plot
the data.

ListView lstXData Name = lstXData

GridLines = True

LabelEdit = lvwAutomatic

View = lvwReport

X-data values. Set the
view type to lvwReport
to allow the user to add
data to the list view.

ListView lstYData Name = lstYData

GridLines = True

LabelEdit = lvwAutomatic

View = lvwReport

Y-data values. Set the
view type to lvwReport
to allow the user to add
data to the list view.

ListView lstInterp Name = lstInterp

GridLines = True

LabelEdit = lvwAutomatic

View = lvwReport

Interpolation points

CommandButton cmdEvaluate Caption = Evaluate

Default = True

Executes the function

CommandButton cmdCancel Caption = Cancel

Cancel = True

Closes the dialog box
without executing
function

4 When the design is complete, save the project by selecting File > Save.

5 When prompted for the project name, type Interp.vbp, and for the form,
type frmInterp.frm.

6 To write the underlying code, right-click frmInterp in the Project window
and select View Code.

14-28

Univariate Interpolation Example

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Private theInterp As UnivariateInterp.Interp 'Variable to hold the COM object

Private Sub cmdCancel_Click()

' Unload the form if the user hits the cancel button.

Unload Me

End Sub

Private Sub Form_Initialize()

On Error GoTo Handle_Error

' Create the COM object

' If there is an error, handle it accordingly.

Set theInterp = New UnivariateInterp.Interp

' Set the flags such that the input is always passed as double data.

theInterp.MWFlags.DataConversionFlags.CoerceNumericToType = mwTypeDouble

Exit Sub

Handle_Error:

' Error handling code

MsgBox ("Error " & Err.Description)

End Sub

Private Sub Form_Load()

' Set the run time properties of the components

Dim Len1 As Long ' Variable to hold length parameter of the list box

Dim Len2 As Long ' Variable to hold the length parameter of the list box

Len2 = lstInterp.Width / 2

Len1 = (lstInterp.Width - Len2) - 150

' Add the column headers to the list boxes

Call lstXData.ColumnHeaders.Add(, , "XData", Len2)

Call lstYData.ColumnHeaders.Add(, , "YData", Len2)

Call lstInterp.ColumnHeaders.Add(, , "Interp Data", Len1)

Call lstInterp.ColumnHeaders.Add(, , "Interp YData", Len2)

' Enable the grid lines

lstXData.GridLines = True

lstYData.GridLines = True

14-29

14 Using COM Components in Microsoft® Visual Basic® Applications

lstInterp.GridLines = True

lstInterp.FullRowSelect = True

' Set the Tab indices for each of the components

txtNumDataPts.TabIndex = 1

txtInterp.TabIndex = 2

lstXData.TabIndex = 3

lstYData.TabIndex = 4

lstInterp.TabIndex = 5

cmdEvaluate.TabIndex = 6

cmdCancel.TabIndex = 7

End Sub

Private Sub txtInterp_Change()

' If user changes number of interpolation points, set the interpolation

' point listbox to accomodate the new number of points.

Dim loopCount As Integer ' loop count

Dim numData As Integer

On Error GoTo Handle_Error

' First clear the listbox

Call lstInterp.ListItems.Clear

' Create space for the requested number of interpolation points

If Not (txtInterp.Text = "") Then

numData = CDbl(txtInterp.Text)

For loopCount = 1 To numData

Call lstInterp.ListItems.Add(loopCount, , "")

Next

End If

Exit Sub

Handle_Error:

' Reset the list to 0 elements and also the text box to an empty string.

MsgBox ("Invalid value for number of Data points")

lstInterp.ListItems.Clear

txtInterp.Text = ""

End Sub

Private Sub txtNumDataPts_Change()

' If the user changes the number of data points, set the XData and YData

' listboxes to accomodate the new number of points.

Dim loopCount As Integer ' loop count

14-30

Univariate Interpolation Example

Dim numData As Integer

On Error GoTo Handle_Error

' First clear both the listbox (XData and YData)

Call lstXData.ListItems.Clear

Call lstYData.ListItems.Clear

' Create space for the requested number of data points (XData and YData).

If Not (txtNumDataPts.Text = "") Then

numData = CDbl(txtNumDataPts.Text)

For loopCount = 1 To numData

Call lstXData.ListItems.Add(loopCount, , "")

Call lstYData.ListItems.Add(loopCount, , "")

Next

End If

Exit Sub

Handle_Error:

' Reset the list to 0 elements and also the text box to an empty string.

MsgBox ("Error: " & Err.des)

Call lstXData.ListItems.Clear

Call lstYData.ListItems.Clear

txtNumDataPts.Text = ""

End Sub

Private Sub cmdEvaluate_Click()

' Dim R As Range

Dim XDataInterp As Variant ' Result variable object

Dim loopCount As Integer ' A variable used for loop count

Dim item As ListItem ' Temporary variable to store data in list box

Dim XData() As Double ' X value of data points, passed to COM object

Dim YData() As Double ' Y value of data points, passed to the COM object

Dim XInterp() As Double ' X value of interpolation points, passed to COM

' object

Dim Yi As Variant ' Y value of interpolation points, obtained from COM

' object as ouput value

' Set dimensions of the input and ouput data based on user inputs (number

' of data points and number of interpolation points).

ReDim XData(1 To lstXData.ListItems.Count)

ReDim YData(1 To lstYData.ListItems.Count)

ReDim XInterp(1 To lstInterp.ListItems.Count)

ReDim Yi(1 To lstInterp.ListItems.Count)

14-31

14 Using COM Components in Microsoft® Visual Basic® Applications

' Collect the Data and set the XData, YData, XInterp matrices accordingly

For loopCount = 1 To lstXData.ListItems.Count

XData(loopCount) = CDbl(lstXData.ListItems.item(loopCount))

YData(loopCount) = CDbl(lstYData.ListItems.item(loopCount))

Next

For loopCount = 1 To lstInterp.ListItems.Count

XInterp(loopCount) = CDbl(lstInterp.ListItems.item(loopCount))

Yi(loopCount) = -1

Next

' Check if the object was created properly.

' If not, go to the error handling routine.

If theInterp Is Nothing Then GoTo Exit_Form

' If there is an error, continue with the code.

On Error GoTo Handle_Error

'Compute Curve Fitting Data

Call theInterp.UnivariateInterpolation(1,Yi,XData,YData,XInterp,_

chkPlot.Value)

'Call lstInterp.ListItems.Clear

For loopCount = LBound(Yi, 2) To UBound(Yi, 2)

Set item = lstInterp.ListItems(loopCount)

Call item.ListSubItems.Add(, , Format(Yi(1, loopCount), "##.###"))

Next

Call lstInterp.Refresh

GoTo Exit_Form

Handle_Error:

' Error handling routine

MsgBox ("Error: " & Err.Description)

Exit_Form:

End Sub

14-32

Matrix Calculator Example

Matrix Calculator Example

In this section...

“Example Overview” on page 14-33

“Building the Component” on page 14-33

“Using the Component in Microsoft® Visual Basic®” on page 14-34

“Creating the Microsoft® Visual Basic® Form” on page 14-35

Example Overview
This example shows how to encapsulate MATLAB utilities that perform
basic matrix arithmetic. It includes MATLAB code that performs matrix
addition, subtraction, multiplication, division and left division and a function
to evaluate the eigen values for a matrix. The example shows how to create
the COM component using the MATLAB Builder NE product and how to use
the COM component in a Microsoft Visual Basic application independent of
the MATLAB product.

Note This example assumes that you have downloaded the MATLAB code
from http://www.mathworks.com/matlabcentral/ to your work folder.
To get the download, search the File Exchange at matlabcentral for
MatrixArith.

Building the Component

1 At the MATLAB command prompt, change folders to the MatrixMath
folder in your work folder.

2 Enter the command deploytool to open the Deployment Tool window.

3 Create a project with the following settings:

14-33

http://www.mathworks.com/matlabcentral/

14 Using COM Components in Microsoft® Visual Basic® Applications

Setting Value

Project name matrixMath

Class name matrixMathclass

Project folder The name of your work folder followed by the project
name

Generate Verbose
Output

Selected

4 Locate your work folder and navigate to the matrixMath folder, which
contains the MATLAB files needed for the component.

5 Add the following files to the project:

• addMatrices.m

• divideMatrices.m

• eigenValue.m

• leftDivideMatrices.m

• multiplyMatrices.m

• subtractMatrices.m

6 Build the component by clicking the button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output pane
of the Deployment Tool. The files that are needed for the component are
copied to two newly created folders, src and distrib, in the matrixMath
folder. A copy of the build log is placed in the src folder.

Using the Component in Microsoft Visual Basic
You can call the component from any application that supports COM. Follow
these steps to create a Microsoft Visual Basic project and add references to
the necessary libraries.

1 Start Visual Basic.

2 Create a new Standard EXE project.

14-34

Matrix Calculator Example

3 Select Project > References.

4 Ensure that the following libraries are in the project:

MatrixMath 1.0 Type Library

MWComUtil 7.5 Type Library

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page 15-4
for information on this.

Creating the Microsoft Visual Basic Form
The next step creates a front end or a Microsoft Visual Basic form for the
application. End users enter data in this form.

To create a new user form and populate it with the necessary controls:

1 Select Projects > Component. Alternatively, press Ctrl+T.

2 Make sure that Microsoft Windows Common Controls 6.0 is selected.
You will use the Spreadsheet control from this component library.

3 Add a series of controls to the blank form to create an interface as shown in
the next figure.

14-35

14 Using COM Components in Microsoft® Visual Basic® Applications

4 One of the main components used in the Visual Basic form is a Spreadsheet
component. For each Spreadsheet component, set properties as follows.

Property Original Value New Value

DisplayColumnHeaders True False

DisplayHorizontalScrollBar True False

DisplayRowHeaders True False

DisplayTitleBar True False

DisplayToolBar True False

DisplayVerticalScrollBar True False

MaximumWidth 80% 100%

ViewableRange 1:65536 A1:E5

14-36

Matrix Calculator Example

A consolidated list of components added to the form and the properties
modified is as follows.

Control Type Control Name Properties Purpose

Form frmMatrixMath Caption = Matrix
Laboratory

Container for all
components

Frame frmInput Caption = Input Data
Points

Groups all input controls

Frame frmOutput Caption = Output
Coefficients

Groups all output
controls

Spreadsheet sheetMat1 Refer to previous table. Accepts input matrix 1
from user

Spreadsheet sheetMat2 Refer to previous table. Accepts input matrix 2
from user

Spreadsheet sheetMat3 Refer to previous table. Accepts input matrix 3
from user

Spreadsheet sheetResultMat Refer to previous table. Displays result matrix

Label lblAdd Caption = Add Labels Add option
button

OptionButton optOperation Index = 0 Option button to perform
addition

Label lblSub Caption = Subtract Labels Subtract option
button

OptionButton optOperation Index = 1 Option button to perform
subtraction

Label lblMult Caption = Multiply Labels Multiply option
button

OptionButton optOperation Index = 2 Option button to perform
multiplication

Label lblDivide Caption = Divide Labels Divide option
button

OptionButton optOperation Index = 3 Option button to perform
division

14-37

14 Using COM Components in Microsoft® Visual Basic® Applications

Control Type Control Name Properties Purpose

Label lblLeftDivide Caption = Left Divide Labels Left Divide
option button

OptionButton optOperation Index = 4 Option button to perform
left division

Label lblEig Caption = Eigenvalue Labels Eigenvalue
option button

OptionButton optOperation Index = 5 Option button to
calculate Eigenvalue
of first matrix

CommandButton cmdEvaluate Caption = Evaluate

Default = True

Executes function

CommandButton cmdCancel Caption = Cancel

Cancel = True

Closes dialog box without
executing function

5 When the design is complete, save the project by selecting File > Save.
When prompted for the project name, type MatrixMathVB.vbp, and for
the form, type frmMatrixMath.frm.

6 To write the underlying code, right-click frmMatrixMath in the Project
window, and select View Code.

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Dim theMatCal As matrixMath.matrixMath

Private Sub Form_Initialize()

' Create an instance of the COM object and set the MWArray flags.

' If this fails, exit from the form.

On Error GoTo exit_form

' Create the object.

Set theMatCal = New matrixMath.matrixMath

14-38

Matrix Calculator Example

' Force the input to be of type double.

theMatCal.MWFlags.DataConversionFlags.CoerceNumericToType = mwTypeDouble

' Set the AutoResizeOutput flag to True, so that you do not have to specify

' the size of the output variable as returned by the COM object.

theMatCal.MWFlags.ArrayFormatFlags.AutoResizeOutput = True

' Get the results in a Matrix format.

theMatCal.MWFlags.ArrayFormatFlags.OutputArrayFormat =_

mwArrayFormatMatrix

Exit Sub

exit_form:

' Error handling routine. Since no object is created, display error '

'message and unload the form.

MsgBox ("Error: " & Err.Description)

Unload Me

End Sub

Private Sub Form_Load()

' Set the run time properties for all the components.

frmInputs.TabIndex = 1

sheetMat1.AutoFit = True

' Set the tab order for each component and the viewable range.

' If you need a larger viewable range, you might want to turn the

' horizontal and vertical scroll bars to TRUE.

sheetMat1.TabStop = True

sheetMat1.TabIndex = 1

sheetMat1.Width = 4875

sheetMat1.ViewableRange = "A1:E5"

sheetMat2.TabStop = True

sheetMat2.TabIndex = 2

sheetMat2.Width = 4875

sheetMat2.ViewableRange = "A1:E5"

sheetMat3.TabStop = True

sheetMat3.TabIndex = 3

sheetMat3.Width = 4875

sheetMat3.ViewableRange = "A1:E5"

sheetResultMatTabStop = False

14-39

14 Using COM Components in Microsoft® Visual Basic® Applications

sheetResultMatTabIndex = 1

sheetResultMatWidth = 4875

sheetResultMat.ViewableRange = "A1:E5"

frmOutput.TabIndex = 2

optOperation(0).TabIndex = 3

optOperation(1).TabIndex = 4

optOperation(2).TabIndex = 5

optOperation(3).TabIndex = 6

optOperation(4).TabIndex = 7

optOperation(5).TabIndex = 8

End Sub

Private Sub cmdCancel_Click()

' When the user clicks on the Cancel button, unload the form.

Unload Me

End Sub

Private Sub cmdEval_Click()

' Declare the variables to be used in the code

Dim data1 As Range

' This is the temporary variable that holds the value entered in

' the spreadsheet.

'Dim finalRows As Double ' The number of

'Dim finalCols As Double

' Dim tempVal As Double

Dim matArray1 As Variant ' Variable to hold the value of input Matrix 1,

' passed to the COM object directly.

Dim matArray2 As Variant ' Variable to hold the value of input Matrix 1,

' passed via varArg variable.

Dim matArray3 As Variant ' Variable to hold the value of input Matrix 1,

' passed via varArg variable.

Dim varArg(2) As Variant ' Variable to hold the value of input Matrix 1,,

' contains the two optional matrices and is passed to the COM object.

'Dim mat1() As Double

'Dim mat1Dimension2() As Variant

14-40

Matrix Calculator Example

Dim tempRange As Range ' Take the range value as obtained from the

' user input into a temporary range.

Dim resultMat As Variant ' Variable to take the result matrix in

Dim msg As String ' The message thrown by the COM object is taken

' in this variable.

Call sheetResultMat.ActiveSheet.UsedRange.Clear

' Check if the COM object was created properly.

' If not exit

If theMatCal Is Nothing Then GoTo exit_form

' Get the used range of data from the sheetMat1, which will then be

' converted into matArray1.

Set data1 = sheetMat1.ActiveSheet.UsedRange

'finalRows = data1.Rows.Count

'finalCols = data1.Columns.Count

'ReDim mat1(1 To data1.Rows.Count)

'ReDim mat1Dimension2(1 To data1.Columns.Count)

ReDim matArray1(1 To data1.Rows.Count, 1 To data1.Columns.Count) As_

Double

For RowCount = 1 To data1.Rows.Count

For ColCount = 1 To data1.Columns.Count

' Extract the values and populate input matrix 1.

Set tempRange = data1.Cells(RowCount, ColCount)

'tempVal = tempRange.Value

'matArray1(RowCount, ColCount) = tempVal

matArray1(RowCount, ColCount) = tempRange.Value

'Set mat1(ColCount) = tempRange.Value

Next ColCount

' mat1Dimension2(RowCount) = mat1()

Next RowCount

Set data1 = sheetMat2.ActiveSheet.UsedRange

If (Not (data1.Value = "")) Then

ReDim matArray2(1 To data1.Rows.Count, 1 To data1.Columns.Count) As_

Double

For RowCount = 1 To data1.Rows.Count

14-41

14 Using COM Components in Microsoft® Visual Basic® Applications

For ColCount = 1 To data1.Columns.Count

Set tempRange = data1.Cells(RowCount, ColCount)

tempVal = tempRange.Value

matArray2(RowCount, ColCount) = tempVal

Next ColCount

Next RowCount

finalCols = data1.Columns.Count

varArg(0) = matArray2

End If

Set data1 = sheetMat3.ActiveSheet.UsedRange

If (Not (data1.Value = "")) Then

ReDim matArray3(1 To data1.Rows.Count, 1 To data1.Columns.Count) As_

Double

For RowCount = 1 To data1.Rows.Count

For ColCount = 1 To data1.Columns.Count

Set tempRange = data1.Cells(RowCount, ColCount)

tempVal = tempRange.Value

matArray3(RowCount, ColCount) = tempVal

Next ColCount

Next RowCount

finalCols = data1.Columns.Count

varArg(1) = matArray3

End If

' Based on the operation selected by the user, call the appropriate method

' from the COM object.

If optOperation.Item(0).Value = True Then ' Add

Call theMatCal.addMatrices(2, resultMat, msg, matArray1, varArg)

ElseIf optOperation.Item(1).Value = True Then ' Subtract

Call theMatCal.subtractMatrices(2, resultMat, msg, matArray1, varArg)

ElseIf optOperation.Item(2).Value = True Then ' Multiply

Call theMatCal.multiplyMatrices(2, resultMat, msg, matArray1, varArg)

ElseIf optOperation.Item(3).Value = True Then ' Divide

Call theMatCal.divideMatrices(2, resultMat, msg, matArray1, varArg)

ElseIf optOperation.Item(4).Value = True Then ' Left Divide

Call theMatCal.leftDivideMatrices(2, resultMat, msg, matArray1,_

varArg)

ElseIf optOperation.Item(5).Value = True Then ' Eigen Value

Call theMatCal.eigenValue(2, resultMat, msg, matArray1)

14-42

Matrix Calculator Example

End If

' If the result matrix is a scalar double, display it in the first cell.

If (VarType(resultMat) = vbDouble) Then

Set tempRange = sheetResultMat.Cells(1, 1)

tempRange.Value = resultMat

' If the result matrix is not a scalar double, loop through it to display

' all the elements.

Else

For RowCount = 1 To UBound(resultMat, 1)

For ColCount = 1 To UBound(resultMat, 2)

Set tempRange = sheetResultMat.Cells(RowCount, ColCount)

tempRange.Value = resultMat(RowCount, ColCount)

Next ColCount

Next RowCount

End If

Exit Sub

exit_form:

MsgBox ("Error: " & Err.Description)

Unload Me

End Sub

' If the user changes the operation, clear the result matrix.

Private Sub optOperation_Click(Index As Integer)

Call sheetResultMat.ActiveSheet.Cells.Clear

End Sub

14-43

14 Using COM Components in Microsoft® Visual Basic® Applications

Curve Fitting Example

In this section...

“Example Overview” on page 14-44

“Building the Component” on page 14-44

“Building the Project” on page 14-45

“Using the Component in Microsoft® Visual Basic®” on page 14-45

“Creating the Microsoft® Visual Basic® Form” on page 14-45

Example Overview
This example demonstrates the optimal fitting of a nonlinear function to a
set of data, using the curve-fitting demo fitfun provided with the MATLAB
product. It uses fminsearch, an implementation of the Nelder-Mead simplex
(direct search) algorithm, to minimize a nonlinear function of several
variables.

This example shows you how to create the COM component using the
MATLAB Builder NE product and how to use this COM component in a
Microsoft Visual Basic application independent of MATLAB.

Note This example assumes that you have downloaded the MATLAB code
from http://www.mathworks.com/matlabcentral/ to the matlabroot folder.
To get the download, search the File Exchange at matlabcentral for COM
Builder Demo: Curve Fitting.

Building the Component

1 At the MATLAB command prompt, change folders to matlabroot.

2 Enter the deploytool command to open the Deployment Tool window.

3 Create a project with the following settings:

14-44

http://www.mathworks.com/matlabcentral/

Curve Fitting Example

Project name CurveFit

Class name CurveFitclass

Building the Project

1 In the Deployment Tool window, add fitfun.m and fitdemo.m from the
folder matlabroot/CurveFitDemo.

2 Click the button in the toolbar.

The component is created and placed in the distrib folder within the
Classfolder.

Using the Component in Microsoft Visual Basic
You can call the component from any application that supports COM.

Open CurveFitComp.vcproj or create a Microsoft Visual Basic project and
add references to the necessary libraries:

1 Start Visual Basic.

2 Create a new Standard EXE project.

3 Select Project > References.

4 Ensure that the following libraries are included in the project:

CurveFit 1.0 Type Library
MWComUtil 7.5 Type Library

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page 15-4
for information.

Creating the Microsoft Visual Basic Form
The next step is to create a front end or a Microsoft Visual Basic form for the
application. End users enter data on the form.

14-45

14 Using COM Components in Microsoft® Visual Basic® Applications

To create a new user form and populate it with the necessary controls:

1 Select Projects > Component. Alternatively, press Ctrl+T.

2 Make sure that Microsoft Windows Common Controls 6.0 is selected.
You will use the ListView control from this component library.

3 Add a series of controls to the blank form to create an interface.

The following table shows the components and properties that are required.

Control Type Control Name Properties Purpose

Form frmCurveFit Caption = Curve
Fitting

Container for all
components.

Frame frmInput Name = frmInput*

Caption = Input Data
Points

Groups all input
controls.

Frame frmOutput Name = frmOutput*

Caption = Output
Coefficients

Groups all output
controls.

Label lblNumDataPoints Caption = Number of
Data Points

Labels the text
box that takes the
number of data
points the user
wants to enter.

TextBox txtNumOfDatPoints Text = Holds number of
data points the
user wants to
enter. Sets size
of list box added
later.

14-46

Curve Fitting Example

Control Type Control Name Properties Purpose

ListView lstXData Name = lstXData

GridLines = TrueLabel

Edit = lvwAutomatic

View = lvwReport

X-data values.
Set the view type
to lvwReport to
enable user to add
data to the list
view.

ListView lxtYData Name = lstYData

GridLines = TrueLabel

Edit = lvwAutomatic

View = lvwReport

Y-data values.

Label lblCoeff1* Caption = Co-efficient
1

Labels text box for
coefficient 1.

Label lblCoeff2 Caption = Co-efficient
2

Labels text box for
coefficient 2.

TextBox txtCoeff1 Text = Displays value of
coefficient 1 as
calculated by the
COM module.

TextBox txtCoeff2 Text = Displays value of
coefficient 2 as
calculated by the
COM module.

Label lblLambda1* Caption = Lambda 1 Labels text box for
lambda 1.

Label lblLambda2 Caption = Lambda 2 Labels text box for
lambda 2.

TextBox txtLambda1 Text = Displays value
of lambda 1 as
calculated by the
COM module.

14-47

14 Using COM Components in Microsoft® Visual Basic® Applications

Control Type Control Name Properties Purpose

TextBox txtLambda2 Text = Displays value
of lambda 2 as
calculated by the
COM module.

CommandButton cmdEvaluate Caption = Evaluate

Default = True

Executes function.

CommandButton cmdCancel Caption = Cancel

Cancel = True

Closes dialog box
without executing
the function.

4 When the design is complete, save the project by selecting File > Save.

5 When prompted for the project name, type CurveFitExample.vbp, and for
the form, type frmCurveFit.frm.

6 In the Project window, right-click frmCurveFit and select View Code.

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Dim theFit As CurveFit.CurveFit ' Variable to hold the COM Object

' This routine is exectued when the form is initialized.

Private Sub Form_Initialize()

' If the initialize routine fails, handle it accordingly.

On Error GoTo Exit_Form

' Create the COM object

Set theFit = New CurveFit.CurveFit

' Set the flags such that the output is transposed.

theFit.MWFlags.ArrayFormatFlags.TransposeOutput = True

Exit Sub

Exit_Form:

' Display the error message and Unload the form if object

14-48

Curve Fitting Example

creation failed

MsgBox ("Error: " & Err.Description)

MsgBox ("Error: Could not create the COM object")

Unload Me

End Sub

Private Sub Form_Load()

On Error GoTo Exit_Form

' Set the run-time properties of the components

' Set the headers of the column

Call lstXData.ColumnHeaders.Add(, , "X Data")

Call lstYData.ColumnHeaders.Add(, , "Y Data")

' Make labeledit property automatic so that you edit the label.

lstXData.LabelEdit = lvwAutomatic

lstYData.LabelEdit = lvwAutomatic

' Make the grid lines for the listbox visible.

lstXData.GridLines = True

lstYData.GridLines = True

Exit Sub

Exit_Form:

' Error handling routine. Since cannot load the form,

' display the error message and unload the program.

MsgBox ("Error: Could not load the form")

MsgBox ("Error: " & Err.Description)

Unload Me

End Sub

Private Sub cmdCancel_Click()

' If the user hits the cancel button, unload the form.

Unload Me

End Sub

Private Sub txtNumOfDataPoints_Change()

' If user changes number of data points, clear XData and YData

' listboxes. Provide enough spaces for given number of points.

Dim loopCount As Integer

Call lstXData.ListItems.Clear

14-49

14 Using COM Components in Microsoft® Visual Basic® Applications

Call lstYData.ListItems.Clear

If (txtNumOfDataPoints.Text = "") Then

Exit Sub

End If

For loopCount = 1 To CInt(txtNumOfDataPoints.Text)

lstXData.ListItems.Add (loopCount)

lstYData.ListItems.Add (loopCount)

Next loopCount

End Sub

Private Sub cmdEvaluate_Click()

Dim loopCount As Integer ' loop counter

Dim numOfData As Integer ' variable to hold the number of data

' points the user has entered

Dim XData() As Double ' Column Vector for XData, will be passed

' as input to the COM method.

Dim YData() As Double ' Column Vector for YData, will be passed

' as input to the COM method.

Dim Coeff As Variant ' Coefficient values will be returned by

' the COM method in this variable.

Dim Lambda As Variant ' Lambda values will be returned by the

' COM method in this variable.

' If there is an error, handle it accordingly.

On Error GoTo Handle_Error

If txtNumOfDataPoints.Text = "" Then

Exit Sub

End If

' Get the number of data points.

numOfData = CInt(txtNumOfDataPoints.Text)

ReDim XData(1 To numOfData) As Double

ReDim YData(1 To numOfData) As Double

' Read the input data into respective double arrays.

For loopCount = 1 To numOfData

XData(loopCount) = lstXData.ListItems.Item(loopCount)

YData(loopCount) = lstYData.ListItems.Item(loopCount)

Next loopCount

' Call the COM method

Call theFit.fitdemo(2, Coeff, Lambda, XData, YData)

14-50

Curve Fitting Example

' Display values of coefficients returned by the COM method.

txtCoeff1.Text = CStr(Format(Coeff(1, 1), "##.####"))

txtCoeff2.Text = CStr(Format(Coeff(1, 2), "##.####"))

txtLambda1.Text = CStr(Format(Lambda(1, 1), "##.####"))

txtLambda2.Text = CStr(Format(Lambda(1, 2), "##.####"))

Exit Sub

Handle_Error:

' Error handling routine

MsgBox ("Error: " & Err.Description)

End Sub

14-51

14 Using COM Components in Microsoft® Visual Basic® Applications

Bouncing Ball Simulation Example

In this section...

“Example Overview” on page 14-52

“Building the Component” on page 14-52

“Using the Component in Microsoft® Visual Basic®” on page 14-53

“Creating the Microsoft® Visual Basic® Form” on page 14-54

Example Overview
This example is adapted from the ballode demo provided with the MATLAB
product. It demonstrates repeated event location, where the conditions are
changed after each terminal event.

This demo computes 10 bounces with calls to ode23, which is a MATLAB
function. A user-specified damping factor after each bounce attenuates the
speed of the ball. The trajectory is plotted using the output function odeplot.
In addition to the damping factor, the user can also provide the initial
velocity, the maximum number of bounce to track, and the maximum time
until demo is completed.

This example shows you how to create the COM component using the
MATLAB Builder NE product and how to use this COM component in a
Visual Basic application independent of MATLAB.

Note This example assumes that you have downloaded the MATLAB code to
the matlabroot folder.

Building the Component

1 At the MATLAB command prompt, change folders to matlabroot/BallODE.

2 Enter the command deploytool to open the Deployment Tool window.

3 Use the Deployment Tool to create a project with the following settings:

14-52

Bouncing Ball Simulation Example

Setting Value

Project name bouncingBall

Class name bouncingBallclass

Project folder The name of your work folder followed by the
component name

Generate Verbose
Output

Selected

4 Locate your work folder, navigate to matlabroot/BallODE, and add
ballode.m to the project.

5 Build the component by clicking the button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool window. The files that are needed for the
component are copied to two newly created folders, src and distrib, in the
bouncingBall folder. A copy of the build log is placed in the src folder.

Using the Component in Microsoft Visual Basic
You can call the component from any application that supports COM.

To create a Microsoft Visual Basic project and add references to the necessary
libraries:

1 Start Visual Basic.

2 Create a new Standard EXE project.

3 Select Project > References.

4 Select the following libraries:

• bouncingBall 1.0 Type Library

(If you named your class something other than bouncingBall or gave
a different version number, click and use the appropriate component
and corresponding type library.)

14-53

14 Using COM Components in Microsoft® Visual Basic® Applications

• MWComUtil 7.5 Type Library

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page
15-4 for information on this.

Creating the Microsoft Visual Basic Form
The next task is to create a front end or a Microsoft Visual Basic form for the
application. End users enter data with this form.

To create a new user form and populate it with the necessary controls:

1 Select Projects > Component. Alternatively, press Ctrl+T.

2 Check thatMicrosoft Windows Common Controls 6.0 is selected. You
will use the ListView control from this component library.

3 Add a series of controls to the blank form to create an interface with the
properties listed in the following table.

Control Type Control Name Properties Purpose

Form frmBallOde Caption = Bouncing Ball
ODE

Container for all
components.

Frame frmInput Name = frmInput*

Caption = Input Data
Points

Groups all input controls.

Frame frmOutput Name = frmOutput*

Caption = Output
Coefficients

Groups all output
controls.

Label lblInitVal Caption = Initial
Velocity

Labels the text box
txtInitVal.

TextBox txtInitVal Text = Holds initial velocity by
which ball is thrown into
the air.

14-54

Bouncing Ball Simulation Example

Control Type Control Name Properties Purpose

Label lblDamp Caption = Damping
Factor

Labels the text box
txtDamp.

TextBox txtDamp Text = Holds damping factor for
the bounce, that is, the
factor by which the speed
of the ball is reduced
after it bounces.

Label lblIter Caption = Number of
Bounces

Labels the text box
txtIter.

TextBox txtIter Text = Holds number of
iterations or bounces
to track.

Label lblFinalTime Caption = Maximum Time Labels the text box
txtFinalTime.

TextBox txtFinalTime Text = Stores time until demo is
completed.

ListView lstBounce Name = lstBounce

GridLines = True

LabelEdit = lvwManual

View = lvwReport

Displays the time stamp
when ball bounces off the
ground.

CommandButton cmdEvaluate Caption = Evaluate

Default = True

Executes the function.

CommandButton cmdCancel Caption = Cancel

Cancel = True

Closes the dialog box
without executing the
function.

4 When the design is complete, save the project by selecting File > Save.
When prompted for the project name, type BallOde.vbp, and for the form,
type frmBallOde.frm.

5 In the Project dialog box, right-click frmBallOde and select View Code.

14-55

14 Using COM Components in Microsoft® Visual Basic® Applications

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Private theBall As Variant ' Variable to hold the COM object.

Private Sub cmdCancel_Click()

' If the user presses the Cancel button, unload the form.

Unload Me

End Sub

Private Sub Form_Initialize()

Dim Len1 As Long ' Used to set length of columns for list box.

Dim Len2 As Long ' Used to set length of columns for list box.

On Error GoTo Handle_Error

' Set length of the each column based on length of the listbox

' such that the two columns span the maximum area without

' creating a horizontal scroll bar.

Len2 = lstBounce.Width / 2

Len1 = (lstBounce.Width - Len2) - 300

' Add column headers to each column in the list box.

Call lstBounce.ColumnHeaders.Add(, , "Bounce", Len1)

Call lstBounce.ColumnHeaders.Add(, , "Time", Len2)

' Set tab indices for each component.

txtInitVel.TabIndex = 1

txtDamp.TabIndex = 2

txtIter.TabIndex = 3

txtFinalTime.TabIndex = 4

cmdEvaluate.TabIndex = 5

cmdCancel.TabIndex = 6

lstBounce.TabStop = False

' Create the COM object

' If there is an error, handle it accordingly.

Set theBall = CreateObject("bouncingBall.bouncingBall.1_0")

Exit Sub

Handle_Error:

14-56

Bouncing Ball Simulation Example

' Error handling code

MsgBox ("Error " & Err.Description)

End Sub

Private Sub cmdEvaluate_Click()

' Dim R As Range

Dim zeroTime As Variant ' Result variable object.

Dim loopCount As Integer

Dim item As ListItem

' Check if the object was created properly.

' If not, go to the error handling routine.

If theBall Is Nothing Then GoTo Exit_Form

' If there is an error, continue with the code.

On Error Resume Next

' Process inputs

' If the user does not provide the values for input parameters,

' use the default values.

If txtDamp.Text = Empty Then

txtDamp.Text = 0.9

End If

If txtInitVel.Text = Empty Then

txtInitVel.Text = 20

End If

If txtIter.Text = Empty Then

txtIter.Text = 15

End If

If txtFinalTime.Text = Empty Then

txtFinalTime.Text = 20

End If

'Compute Bouncing ball data

Call theBall.ballode(1, zeroTime, CDbl(txtIter.Text),_

CDbl(txtDamp.Text), CDbl(txtFinalTime.Text),_

CDbl(txtInitVel.Text))

' Display the output values (time stamp when ball bounces on

' the ground).

Call lstBounce.ListItems.Clear

14-57

14 Using COM Components in Microsoft® Visual Basic® Applications

For loopCount = LBound(zeroTime, 1) To UBound(zeroTime, 1)

Set item = lstBounce.ListItems.Add(, , Format(loopCount))

Call item.ListSubItems.Add(, , Format(zeroTime(loopCount,_

1), "##.###"))

Next

Call lstBounce.Refresh

GoTo Exit_Form

Handle_Error:

' Error handling routine

MsgBox (Err.Description)

Exit_Form:

End Sub

14-58

15

How the MATLAB Builder
NE Product Creates COM
Components

• “Overview of Internal Processes” on page 15-2

• “Component Registration” on page 15-4

• “Data Conversion” on page 15-9

• “Calling Conventions” on page 15-23

15 How the MATLAB® Builder™ NE Product Creates COM Components

Overview of Internal Processes

In this section...

“How Is a MATLAB® Builder™ NE Component Created?” on page 15-2

“Code Generation” on page 15-2

“Create Interface Definitions” on page 15-3

“C++ Compilation” on page 15-3

“Linking and Resource Binding” on page 15-3

“Registration of the DLL” on page 15-3

How Is a MATLAB Builder NE Component Created?
The process of creating a MATLAB Builder NE component is completely
automatic from a user point of view. You specify a list of MATLAB files to
process and a few additional pieces of information, such as the component
name, the class names, and the version number.

Code Generation
The first step in the build process generates all source code and other
supporting files needed to create the component. It also creates the main
source file (mycomponent_dll.cpp) containing the implementation of each
exported function of the DLL. The compiler additionally produces an Interface
Description Language (IDL) file (mycomponent_idl.idl), containing the
specifications for the component’s type library, interface, and class, with
associated GUIDs. (GUID is an acronym for Globally Unique Identifier, a
128-bit integer guaranteed always to be unique.)

Created next are the C++ class definition and implementation files
(myclass_com.hpp and myclass_com.cpp). In addition to these source files,
the compiler generates a DLL exports file (mycomponent.def) and a resource
script.

15-2

Overview of Internal Processes

Create Interface Definitions
The second step of the build process invokes the IDL compiler on the IDL file
generated in step 1 (mycomponent_idl.idl), creating the interface header
file (mycomponent_idl.h), the interface GUID file (mycomponent_idl_i.c),
and the component type library file (mycomponent_idl.tlb). The interface
header file contains type definitions and function declarations based on the
interface definition in the IDL file. The interface GUID file contains the
definitions of the GUIDs from all interfaces in the IDL file. The component
type library file contains a binary representation of all types and objects
exposed by the component.

C++ Compilation
The third step compiles all C/C++ source files generated in steps 1 and
2 into object code. One additional file containing a set of C++ template
classes (mclcomclass.h) is included at this point. This file contains template
implementations of all necessary COM base classes, as well as error handling
and registration code.

Linking and Resource Binding
The fourth step produces the finished DLL for the component. This step
invokes the linker on the object files generated in step 3 and the necessary
MATLAB libraries to produce a DLL component (mycomponent_1_0.dll).
The resource compiler is then invoked on the DLL, along with the resource
script generated in step 1, to bind the type library file generated in step 2
into the completed DLL.

Registration of the DLL
The final build step registers the DLL on the system, as described in
“Component Registration” on page 15-4.

15-3

15 How the MATLAB® Builder™ NE Product Creates COM Components

Component Registration

In this section...

“Self-Registering Components” on page 15-4

“Globally Unique Identifier” on page 15-5

“Versioning” on page 15-7

Self-Registering Components
When the MATLAB Builder NE product creates a component, it automatically
generates a binary file called a type library. As a final step of the build, this
file is bound with the resulting DLL as a resource.

MATLAB Builder NE COM components are all self-registering. A
self-registering component contains all the necessary code to add or remove a
full description of itself to or from the system registry. The mwregsvr utility,
distributed with the MCR, registers self-registering DLLs. For example, to
register a component called mycomponent_1_0.dll, issue this command at
the DOS command prompt:

mwregsvr mycomponent_1_0.dll

When mwregsvr completes the registration process, it displays a message
indicating success or failure. Similarly, the command

mwregsvr /u mycomponent_1_0.dll

unregisters the component.

A component installed onto a particular machine must be registered with
mwregsvr. If you move a component into a different folder on the same
machine, you must repeat the registration process. When deleting a
component from a specific machine, first unregister it to ensure that the
registry does not retain erroneous information.

15-4

Component Registration

Tip The mwregsvr utility invokes a process that is similar to regsvr32.exe,
except that mwregsvr does not require interaction with a user at the console.
The regsvr32.exe process belongs to the Windows OS and is used to register
dynamic link libraries and Microsoft ActiveX® controls in the registry. This
program is important for the stable and secure running of your computer and
should not be terminated. You must specify the full path of the component
when calling mwregsvr, or make the call from the folder in which the
component resides. You can use regsvr32.exe as an alternative to mwregsvr
to register your library.

Globally Unique Identifier
Information is stored in the registry as keys with one or more associated
named values. The keys themselves have values of primarily two types:
readable strings and GUIDs. (GUID is an acronym for Globally Unique
Identifier, a 128-bit integer guaranteed always to be unique.)

The builder automatically generates GUIDs for COM classes, interfaces, and
type libraries that are defined within a component at build time, and codes
these keys into the component’s self-registration code.

The interface to the system registry is folder based. COM-related
information is stored under a top-level key called HKEY_CLASSES_ROOT. Under
HKEY_CLASSES_ROOT are several other keys under which the builder writes
component information.

Caution Do not delete the DLL-file in your project’s src folder between
builds. Doing so causes the GUIDs to be regenerated on the subsequent build.
To preserve an older version of the DLL, register it on your system before
rebuilding your project.

See the following table for a list of the keys and their definitions.

15-5

15 How the MATLAB® Builder™ NE Product Creates COM Components

Key Definition

HKEY_CLASSES_ROOT\CLSID Information about COM classes on
the system. Each component
creates a new key under
HKEY_CLASSES_ROOT\CLSID
for each of its COM classes. The
key created has a value of the
GUID that has been assigned the
class and contains several subkeys
with information about the class.

HKEY_CLASSES_ROOT\Interface Information about COM interfaces
on the system. Each component
creates a new key under
HKEY_CLASSES_ROOT\Interface
for each interface it defines. This
key has the value of the GUID
assigned to the interface and
contains subkeys with information
about the interface.

HKEY_CLASSES_ROOT\TypeLib Information about type libraries
on the system. Each component
creates a key for its type library
with the value of the GUID
assigned to it. Under this key a
new key is created for each version
of the type library. Therefore,
new versions of type libraries with
the same name reuse the original
GUID but create a new subkey for
the new version.

HKEY_CLASSES_ROOT\<ProgID>,
HKEY_CLASSES_ROOT\<VerIndProgID>

These two keys are created for
the component’s Program ID and
Version Independent Program ID.
These keys are constructed from
strings of the following forms:

component-name.class-name
component-name.class-name

15-6

Component Registration

Key Definition

version-number

These keys are useful for
creating a class instance from
the component and class names
instead of the GUIDs.

Versioning
MATLAB Builder NE components support a simple versioning mechanism
designed to make building and deploying multiple versions of the same
component easy to implement. The version number of a component appears
as part of the DLL name, as well as part of the version-dependent ID in the
system registry.

When a component is created, you can specify a version number. (The default
is 1.0.) During the development of a specific version of a component, the
version number should be kept constant. When this is done, the MATLAB
Compiler product, in certain cases, reuses type library, class, and interface
GUIDs for each subsequent build of the component. This avoids the creation
of an excessive number of registry keys for the same component during
multiple builds, as occurs if new GUIDs are generated for each build.

When a new version number is introduced, MATLAB Compiler generates new
class and interface GUIDs so that the system recognizes them as distinct from
previous versions, even if the class name is the same. Therefore, once you
deploy a built component, use a new version number for any changes made
to the component. This ensures that after you deploy the new component, it
is easy to manage the two versions.

MATLAB Compiler implements the versioning rules for a specific component
name, class name, and version number by querying the system registry for an
existing component with the same name:

• If an existing component has the same version, it uses the GUID of the
existing component’s type library. If the name of the new class matches the

15-7

15 How the MATLAB® Builder™ NE Product Creates COM Components

previous version, it reuses the class and interface GUIDs. If the class names
do not match, it generates new GUIDs for the new class and interface.

• If it finds an existing component with a different version, it uses the
existing type library GUID and creates a new subkey for the new version
number. It generates new GUIDs for the new class and interface.

• If it does not find an existing component of the specified name, it generates
new GUIDs for the component’s type library, class, and interface.

15-8

Data Conversion

Data Conversion

In this section...

“Conversion Rules” on page 15-9

“Array Formatting Flags” on page 15-19

“Data Conversion Flags” on page 15-21

Conversion Rules
This section describes the data conversion rules for COM components created
with the MATLAB Builder NE product. These components are dual interface
COM objects that support data types compatible with Automation.

Note Automation (formerly called OLE Automation) is a technology that
allows software packages to expose their unique features to scripting tools
and other applications. Automation uses the Component Object Model (COM),
but may be implemented independently from other OLE features, such as
in-place activation.

Caution Be aware that IIS (Internet Information Service) usually prevents
most COM automation on the basis that it may pose a security risk. Therefore,
XLSREAD and other Automation services may fail when served by IIS, leading
to errors such as object reference not set.

When a method is invoked on a MATLAB Builder NE component, the input
parameters are converted to MATLAB internal array format and passed to the
compiled MATLAB function. When the function exits, the output parameters
are converted from MATLAB internal array format to COM Automation types.

The COM client passes all input and output arguments in the compiled
MATLAB functions as type VARIANT. The COM VARIANT type is a union of
several simple data types. A type VARIANT variable can store a variable of any
of the simple types, as well as arrays of any of these values.

15-9

15 How the MATLAB® Builder™ NE Product Creates COM Components

The Win32 API provides many functions for creating and manipulating
VARIANTs in C/C++, and Microsoft Visual Basic provides native language
support for this type. See the Microsoft Visual Studio documentation for
definitions and API support for COM VARIANTs. VARIANT variables are self
describing and store their type code as an internal field of the structure.

Note This discussion of data refers to both VARIANT and Variant data types.
VARIANT is the C++ name and Variant is the corresponding data type in
Visual Basic.

See VARIANT Type Codes Supported on page 15-10 for a list of the VARIANT
type codes supported by the builder components.

See MATLAB® to COM VARIANT Conversion Rules on page 15-12 and COM
VARIANT to MATLAB® Conversion Rules on page 15-17 for conversion rules
between COM VARIANTs and MATLAB arrays.

VARIANT Type Codes Supported

VARIANT Type Code
(C/C++) C/C++ Type

Variant Type
Code (Visual
Basic)

Visual
Basic
Type Definition

VT_EMPTY - vbEmpty - Uninitialized
VARIANT

VT_I1 char - - Signed one-byte
character

VT_UI1 unsigned char vbByte Byte Unsigned one-byte
character

VT_I2 short vbInteger Integer Signed two-byte
integer

VT_UI2 unsigned
short

- - Unsigned two-byte
integer

VT_I4 long vbLong Long Signed four-byte
integer

15-10

Data Conversion

VARIANT Type Codes Supported (Continued)

VARIANT Type Code
(C/C++) C/C++ Type

Variant Type
Code (Visual
Basic)

Visual
Basic
Type Definition

VT_UI4 unsigned long - - Unsigned four-byte
integer

VT_R4 float vbSingle Single IEEE® four-byte
floating-point value

VT_R8 double vbDouble Double IEEE eight-byte
floating-point value

VT_CY CY+ vbCurrency Currency Currency value
(64-bit integer, scaled
by 10,000)

VT_BSTR BSTR+ vbString String String value

VT_ERROR SCODE+ vbError - HRESULT (signed
four-byte integer
representing a COM
error code)

VT_DATE DATE+ vbDate Date Eight-byte
floating-point value
representing date
and time

VT_INT int - - Signed integer;
equivalent to type
int

VT_UINT unsigned int - - Unsigned integer;
equivalent to type
unsigned int

VT_DECIMAL DECIMAL+ vbDecimal - 96-bit (12-byte)
unsigned integer,
scaled by a variable
power of 10

15-11

15 How the MATLAB® Builder™ NE Product Creates COM Components

VARIANT Type Codes Supported (Continued)

VARIANT Type Code
(C/C++) C/C++ Type

Variant Type
Code (Visual
Basic)

Visual
Basic
Type Definition

VT_BOOL VARIANT_BOOL+ vbBoolean Boolean Two-byte Boolean
value (0xFFFF =
True; 0x0000 = False)

VT_DISPATCH IDispatch* vbObject Object IDispatch* pointer
to an object

VT_VARIANT VARIANT+ vbVariant Variant VARIANT (can only be
specified if combined
with VT_BYREF or
VT_ARRAY)

<anything>|VT_ARRAY Bitwise combine
VT_ARRAY with any
basic type to declare
as an array

<anything>|VT_BYREF Bitwise combine
VT_BYREF with any
basic type to declare
as a reference to a
value

+ Denotes Windows specific type. Not part of standard C/C++.

MATLAB to COM VARIANT Conversion Rules

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

cell A 1-by-1 cell array
converts to a single
VARIANT with a type
conforming to the
conversion rule for the
MATLAB data type of
the cell contents.

A multidimensional
cell array converts
to a VARIANT of type
VT_VARIANT|VT_ARRAY
with the type of
each array member
conforming to the

15-12

Data Conversion

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

conversion rule for the
MATLAB data type of
the corresponding cell.

structure VT_DISPATCH VT_DISPATCH A MATLAB struct
array is converted to
an MWStruct object.
(See “Class MWStruct”
on page 16-18.) This
object is passed as a
VT_DISPATCH type.

char A 1-by-1 char matrix
converts to a VARIANT
of type VT_BSTR with
string length = 1.

A 1-by-L char matrix is
assumed to represent
a string of length Lin
MATLAB. This case
converts to a VARIANT
of type VT_BSTR with a
string length = L. char
matrices of more than
one row, or of a higher
dimensionality convert
to a VARIANT of type
VT_BSTR|VT_ARRAY.
Each string in the
converted array
is of length 1 and
corresponds to each
character in the
original matrix.

Arrays of strings are
not supported as char
matrices. To pass an
array of strings, use
a cell array of 1-by-L
char matrices.

15-13

15 How the MATLAB® Builder™ NE Product Creates COM Components

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

sparse VT_DISPATCH VT_DISPATCH A MATLAB sparse
array is converted to
an MWSparse object.
(See “Class MWSparse”
on page 16-29.) This
object is passed as a
VT_DISPATCH type.

double A real 1-by-1 double
matrix converts to
a VARIANT of type
VT_R8. A complex
1-by-1 double matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
double matrix converts
to a VARIANT of type
VT_R8|VT_ARRAY.
A complex
multidimensional
double matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class. See
“Class MWComplex” on
page 16-26

single A real 1-by-1 single
matrix converts to a
VARIANT of type VT_R4.
A complex 1-by-1 single
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional
single matrix converts
to a VARIANT of type
VT_R4|VT_ARRAY.
A complex
multidimensional
single matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class.

15-14

Data Conversion

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

int8 A real 1-by-1 int8
matrix converts to a
VARIANT of type VT_I1.
A complex 1-by-1 int8
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional int8
matrix converts to
a VARIANT of type
VT_I1|VT_ARRAY.
A complex
multidimensional int8
matrix converts to
a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class.

uint8 A real 1-by-1 uint8
matrix converts to
a VARIANT of type
VT_UI1. A complex
1-by-1 uint8 matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_UI1|VT_ARRAY.A
complex
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class.

int16 A real 1-by-1 int16
matrix converts to a
VARIANT of type VT_I2.
A complex 1-by-1 int16
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional
int16 matrix converts
to a VARIANT of type
VT_I2|VT_ARRAY.
A complex
multidimensional
int16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class.

15-15

15 How the MATLAB® Builder™ NE Product Creates COM Components

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

uint16 A real 1-by-1 uint16
matrix converts to
a VARIANT of type
VT_UI2. A complex
1-by-1 uint16 matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
uint16 matrix converts
to a VARIANT of type
VT_UI2|VT_ARRAY.
A complex
multidimensional
uint16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class.

int32 A 1-by-1 int32 matrix
converts to a VARIANT of
type VT_I4. A complex
1-by-1 int32 matrix
converts to a VARIANT
of type VT_DISPATCH.

A multidimensional
int32 matrix converts
to a VARIANT of type
VT_I4|VT_ARRAY.
A complex
multidimensional
int32 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class.

uint32 A 1-by-1 uint32 matrix
converts to a VARIANT of
type VT_UI4. A complex
1-by-1 uint32 matrix
converts to a VARIANT
of type VT_DISPATCH.

A multidimensional
uint32 matrix converts
to a VARIANT of type
VT_UI4|VT_ARRAY.
A complex
multidimensional
uint32 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class.

Function handle VT_EMPTY VT_EMPTY Not supported

Java class VT_EMPTY VT_EMPTY Not supported

User class VT_EMPTY VT_EMPTY Not supported

logical VT_Bool VT_Bool|VT_ARRAY

15-16

Data Conversion

COM VARIANT to MATLAB Conversion Rules

VARIANT Type
MATLAB Data Type (Scalar or
Array Data) Comments

VT_EMPTY N/A Empty array created.

VT_I1 int8

VT_UI1 uint8

VT_I2 int16

VT_UI2 uint16

VT_I4 int32

VT_UI4 uint32

VT_R4 single

VT_R8 double

VT_CY double

VT_BSTR char A VARIANT of type VT_BSTR
converts to a 1-by-L MATLAB
char array, where L = the
length of the string to be
converted. A VARIANT of type
VT_BSTR|VT_ARRAY converts to
a MATLAB cell array of 1-by-L
char arrays.

VT_ERROR int32

15-17

15 How the MATLAB® Builder™ NE Product Creates COM Components

COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type
MATLAB Data Type (Scalar or
Array Data) Comments

VT_DATE double VARIANT dates are stored as
doubles starting at midnight
Dec. 31, 1899. MATLAB dates
are stored as doubles starting
at 0/0/00 00:00:00. Therefore,
a VARIANT date of 0.0 maps to
a MATLAB numeric date of
693960.0. VARIANT dates are
converted to MATLAB double
types and incremented by
693960.0.

VARIANT dates can be optionally
converted to strings. See “Data
Conversion Flags” on page
15-21 for more information on
type coercion.

VT_INT int32

VT_UINT uint32

VT_DECIMAL double

VT_BOOL logical

VT_DISPATCH Varies IDispatch* pointers are
treated within the context of
what they point to. Objects
must be supported types with
known data extraction and
conversion rules, or expose a
generic Value property that
points to a single VARIANT type.
Data extracted from an object
is converted based on the rules
for the particular VARIANT
obtained.

15-18

Data Conversion

COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type
MATLAB Data Type (Scalar or
Array Data) Comments

Currently, support exists for
Excel Range objects as well as
the builder types MWStruct,
MWComplex, MWSparse, and
MWArg. See “Utility Library
Classes” on page 16-3 for
information on the builder types
to use with COM components.

anything|VT_BYREF Varies Pointers to any of the basic
types are processed according
to the rules for what they point
to. The resulting MATLAB
array contains a deep copy of
the values.

anything|VT_ARRAY Varies Multidimensional VARIANT
arrays convert to
multidimensional MATLAB
arrays, each element converted
according to the rules for the
basic types. Multidimensional
VARIANT arrays of type
VT_VARIANT|VT_ARRAY convert
to multidimensional cell arrays,
each cell converted according to
the rules for that specific type.

Array Formatting Flags
The builder components have flags that control how array data is formatted
in both directions. Generally, you should develop client code that matches the
intended inputs and outputs of the MATLAB functions with the corresponding
methods on the compiled COM objects, in accordance with the rules listed in
MATLAB® to COM VARIANT Conversion Rules on page 15-12 and COM

15-19

15 How the MATLAB® Builder™ NE Product Creates COM Components

VARIANT to MATLAB® Conversion Rules on page 15-17. In some cases
this is not possible, for example, when existing MATLAB code is used in
conjunction with a third-party product like Excel.

The following table shows the array formatting flags.

Array Formatting Flags

Flag Description

InputArrayFormat Defines the array formatting rule used on input arrays.
An input array is a VARIANT array, created by the
client, sent as an input parameter to a method call on a
compiled COM object.

Valid values for this flag are mwArrayFormatAsIs,
mwArrayFormatMatrix, and mwArrayFormatCell.

mwArrayFormatAsIs passes the array unchanged.

mwArrayFormatMatrix (default) formats all arrays
as matrices. When the input VARIANT is of type
VT_ARRAY| type, where type is any numeric type,
this flag has no effect. When the input VARIANT is of
type VT_VARIANT|VT_ARRAY, VARIANTs in the array are
examined. If they are single-valued and homogeneous
in type, a MATLAB matrix of the appropriate type is
produced instead of a cell array.

mwArrayFormatCell interprets all arrays as MATLAB
cell arrays.

InputArrayIndFlag Sets the input array indirection level used with the
InputArrayFormat flag (applicable only to nested arrays,
i.e., VARIANT arrays of VARIANTs, which themselves are
arrays). The default value for this flag is zero, which
applies the InputArrayFormat flag to the outermost
array. When this flag is greater than zero, e.g., equal
to N, the formatting rule attempts to apply itself to the
Nth level of nesting.

15-20

Data Conversion

Array Formatting Flags (Continued)

Flag Description

OutputArrayFormat Defines the array formatting rule used on output arrays.
An output array is a MATLAB array, created by the
compiled COM object, sent as an output parameter
from a method call to the client. The values for this
flag, mwArrayFormatAsIs, mwArrayFormatMatrix, and
mwArrayFormatCell, cause the same behavior as the
corresponding InputArrayFormat flag values.

OutputArrayIndFlag (Applies to nested cell arrays only.) Output array
indirection level used with the OutputArrayFormat flag.
This flag works exactly like InputArrayIndFlag.

AutoResizeOutput (Applies to Excel ranges only.) When the target output
from a method call is a range of cells in an Excel
worksheet and the output array size and shape is not
known at the time of the call, set this flag to True to
resize each Excel range to fit the output array.

TransposeOutput Set this flag to True to transpose the output arguments.
Useful when calling a MATLAB Builder NE component
from Excel where the MATLAB function returns outputs
as row vectors, and you want the data in columns.

Data Conversion Flags
MATLAB Builder NE components contain flags to control the conversion of
certain VARIANT types to MATLAB types. These flags are as follows:

• “CoerceNumericToType” on page 15-22

• “InputDateFormat” on page 15-22

• “OutputAsDate As Boolean” on page 15-22

• “DateBias As Long” on page 15-22

15-21

15 How the MATLAB® Builder™ NE Product Creates COM Components

CoerceNumericToType
This flag tells the data converter to convert all numeric VARIANT data to one
specific MATLAB type. VARIANT type codes affected by this flag are VT_I1,
VT_UI1, VT_I2, VT_UI2, VT_I4, VT_UI4, VT_R4, VT_R8, VT_CY, VT_DECIMAL,
VT_INT, VT_UINT, VT_ERROR, VT_BOOL, and VT_DATE. Valid values for this
flag are mwTypeDefault, mwTypeChar, mwTypeDouble, mwTypeSingle,
mwTypeLogical, mwTypeInt8, mwTypeUint8, mwTypeInt16, mwTypeUint16,
mwTypeInt32, and mwTypeUint32.

The default for this flag, mwTypeDefault, converts numeric data according to
the rules listed in “Data Conversion” on page 15-9.

InputDateFormat
This flag tells the data converter how to convert VARIANT dates to MATLAB
dates. Valid values for this flag are mwDateFormatNumeric (default) and
mwDateFormatString. The default converts VARIANT dates according to
the rule listed in VARIANT Type Codes Supported on page 15-10 . The
mwDateFormatString flag converts a VARIANT date to its string representation.
This flag only affects VARIANT type code VT_DATE.

OutputAsDate As Boolean
This flag instructs the data converter to process an output argument as a
date. By default, numeric dates that are output parameters from compiled
MATLAB functions are passed as Doubles that need to be decremented by
the COM date bias (693960) as well as coerced to COM dates. Set this flag to
True to convert all output values of type Double.

DateBias As Long
This flag sets the date bias for performing COM to MATLAB numeric date
conversions. The default value of this property is 693960, which represents
the difference between the COM Date type and MATLAB numeric dates. This
flag allows existing MATLAB code that already performs the increment of
numeric dates by 693960 to be used unchanged with the builder components.
To process dates with such code, set this property to 0.

15-22

Calling Conventions

Calling Conventions

In this section...

“Producing a COM Class” on page 15-23

“IDL Mapping” on page 15-24

“Microsoft® Visual Basic® Mapping” on page 15-25

Producing a COM Class
Producing a COM class requires the generation of

• A class definition file in Interface Description Language (IDL)

• One or more associated C++ class definition/implementation files

The MATLAB Builder NE product automatically produces the necessary IDL
and C/C++ code to build each COM class in the component. This process is
generally transparent to you when you use the builder to generate a COM
component, and to users of the COM component when they program with it.

For information about IDL and C++ coding rules for building COM objects
and for mappings to other languages, see articles in the MSDN Library.

The following table shows the mapping of a generic MATLAB function to IDL
code and to Microsoft Visual Basic.

15-23

http://msdn.microsoft.com/library/

15 How the MATLAB® Builder™ NE Product Creates COM Components

Code Sample

Generic
MATLAB
Code

function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)

IDL Code
HRESULT foo([in] long nargout,

[in,out] VARIANT* Y1,
[in,out] VARIANT* Y2,
.
.
[in,out] VARIANT* varargout,
[in] VARIANT X1,
[in] VARIANT X2,
.
.
[in] VARIANT varargin);

Visual Basic
Code Sub foo(nargout As Long, _

Y1 As Variant, _
Y2 As Variant, _
.
.
varargout As Variant, _
X1 As Variant, _
X2 As Variant, _
.
.
varargin As Variant)

IDL Mapping
The IDL function definition is generated by producing a function with the
same name as the original MATLAB function and an argument list containing
all inputs and outputs of the original plus one additional parameter, nargout.

When present, the nargout parameter is an [in] parameter of type long. It
is always the first argument in the list. This parameter allows correct passage
of the MATLAB nargout parameter to the compiled MATLAB code. The

15-24

Calling Conventions

nargout parameter is not produced if you encapsulate an MATLAB function
containing no outputs.

Following the nargout parameter, the outputs are listed in the order they
appear on the left side of the MATLAB function, and are tagged as [in,out],
meaning that they are passed in both directions.

The function inputs are listed next, appearing in the same order as they
do on the right side of the original function. All inputs are tagged as [in]
parameters.

When present, the optional varargin/varargout parameters are always
listed as the last input parameters and the last output parameters. All
parameters other than nargout are passed as COM VARIANT types. “Data
Conversion” on page 15-9 lists the rules for conversion between MATLAB
arrays and COM VARIANTs.

Microsoft Visual Basic Mapping
Microsoft Visual Basic provides native support for COM Variants with the
Variant type, as well as implicit conversions for all Visual Basic primitive
types to and from Variants. In general, arrays/scalars of any Visual Basic
primitive type, as well as arrays/scalars of Variant types, can be passed as
arguments.

MATLAB Builder NE components also provide direct support for the Microsoft
Excel Range object, used by Visual Basic for Applications to represent a range
of cells in an Excel worksheet.

See the Visual Basic for Applications documentation included with Microsoft
Excel for more information on Visual Basic data types.

See the MSDN Library for more information about Visual Basic and about
Excel Range manipulation.

15-25

http://msdn.microsoft.com/library/

15 How the MATLAB® Builder™ NE Product Creates COM Components

15-26

16

Utility Library for Microsoft
COM Components

• “Referencing Utility Classes” on page 16-2

• “Utility Library Classes” on page 16-3

• “Enumerations” on page 16-34

16 Utility Library for Microsoft® COM Components

Referencing Utility Classes
This section describes the MWComUtil library. This library is freely
distributable and includes several functions used in array processing, as well
as type definitions used in data conversion. This library is contained in the
file mwcomutil.dll. It must be registered once on each machine that uses
Microsoft COM components created by MATLAB Builder EX.

Register the MWComUtil library at the DOS command prompt with the
command:

mwregsvr mwcomutil.dll

The MWComUtil library includes seven classes (see “Utility Library Classes” on
page 16-3) and three enumerated types (see “Enumerations” on page 16-34).
Before using these types, you must make explicit references to the MWComUtil
type libraries in the Microsoft Visual Basic IDE. To do this select Tools >
References from the main menu of the Visual Basic Editor. The References
dialog box appears with a scrollable list of available type libraries. From this
list, select MWComUtil 1.0 Type Library and click OK.

Note You must specify the full path of the component when calling mwregsvr,
or make the call from the folder in which the component resides.

16-2

Utility Library Classes

Utility Library Classes

In this section...

“Class MWUtil” on page 16-3

“Class MWFlags” on page 16-12

“Class MWStruct” on page 16-18

“Class MWField” on page 16-25

“Class MWComplex” on page 16-26

“Class MWSparse” on page 16-29

“Class MWArg” on page 16-32

Class MWUtil
The MWUtil class contains a set of static utility methods used in array
processing and application initialization. This class is implemented internally
as a singleton (only one global instance of this class per instance of Microsoft
Excel). It is most efficient to declare one variable of this type in global scope
within each module that uses it. The methods of MWUtil are:

• “Sub MWInitApplication(pApp As Object)” on page 16-4

• “Sub MWInitApplicationWithMCROptions(pApp As Object,
[mcrOptionList])” on page 16-5

• “Function IsMCRJVMEnabled() As Boolean” on page 16-6

• “Function IsMCRInitialized() As Boolean” on page 16-7

• “Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])” on page 16-7

• “Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =
False], [pVar0], [pVar1], ..., [pVar31])” on page 16-9

• “Sub MWDate2VariantDate(pVar)” on page 16-11

The function prototypes use Visual Basic syntax.

16-3

16 Utility Library for Microsoft® COM Components

Sub MWInitApplication(pApp As Object)
Initializes the library with the current instance of Microsoft Excel.

Parameters.

Argument Type Description

pApp Object A valid reference to
the current Excel
application

Return Value. None.

Remarks. This function must be called once for each session of Excel that
uses COM components created by MATLAB Builder NE. An error is generated
if a method call is made to a member class of any MATLAB Builder NE COM
component, and the library has not been initialized.

Example. This Visual Basic sample initializes the MWComUtil library with
the current instance of Excel. A global variable of type Object named MCLUtil
holds an instance of the MWUtil class, and another global variable of type
Boolean named bModuleInitialized stores the status of the initialization
process. The private subroutine InitModule() creates an instance of the
MWComUtil class and calls the MWInitApplication method with an argument
of Application. Once this function succeeds, all subsequent calls exit without
recreating the object.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
If Not bModuleInitialized Then

On Error GoTo Handle_Error
If MCLUtil Is Nothing Then

Set MCLUtil = CreateObject("MWComUtil.MWUtil")
End If
Call MCLUtil.MWInitApplication(Application)
bModuleInitialized = True
Exit Sub

Handle_Error:

16-4

Utility Library Classes

bModuleInitialized = False
End If

End Sub

Note If you are developing concurrently with multiple versions of MATLAB
and MWComUtil.dll, for example, using this syntax:

Set MCLUtil = CreateObject("MWComUtil.MWUtil")

requires you to recompile your COM modules every time you upgrade. To
avoid this, make your call to the MWUtil module version-specific, for example:

Set MCLUtil = CreateObject("MWComUtil.MWUtilx.x")

where x.x is the specific version number.

Sub MWInitApplicationWithMCROptions(pApp As Object,
[mcrOptionList])
Start MCR with MCR options. Similar to mclInitializeApplication used
in C/C++ shared libraries.

Parameters.

Argument Type Description

pApp Object A valid reference only
when called from an
Excel application

Non Excel COM clients
pass in Empty.

Return Value. None.

Remarks. Call this function to pass in MCR options (nojvm, logfile, etc.).
Call this function once per process (since the MCR can only be initialized once).

16-5

16 Utility Library for Microsoft® COM Components

Example. This Visual Basic sample initializes the MWComUtil library with
the current instance of Excel. A global variable of type Object named MCLUtil
holds an instance of the MWUtil class, and another global variable of type
Boolean named bModuleInitialized stores the status of the initialization
process. The private subroutine InitModule() creates an instance of the
MWComUtil class and calls the MWInitApplicationWithMCROptions method
with an argument of Application and a string array that contains the
options. Once this function succeeds, all subsequent calls exit without
recreating the object. When this function successfully executes, the MCR
starts up with no JVM and a logfile named logfile.txt.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
If Not bModuleInitialized Then

On Error GoTo Handle_Error
If MCLUtil Is Nothing Then

Set MCLUtil = CreateObject("MWComUtil.MWUtil")
End If

Dim mcrOptions(1 To 3) as String
mcrOptions(1) = "-nojvm"
mcrOptions(2) = "-logfile"
mcrOptions(3) = "logfile.txt"

Call MCLUtil.MWInitApplicationWithMCROptions(Application, mcrOption
bModuleInitialized = True
Exit Sub

Handle_Error:
bModuleInitialized = False

End If
End Sub

Note If you are not using Excel, pass in Empty instead of Application to
MWInitApplicationWithMCROptions.

Function IsMCRJVMEnabled() As Boolean
Returns true if MCR is launched with JVM; otherwise returns false.

16-6

Utility Library Classes

Parameters. None.

Return Value. Boolean

Function IsMCRInitialized() As Boolean
Returns true if MCR is initialized; otherwise returns true

Parameters. None.

Return Value. Boolean

Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
Packs a variable length list of Variant arguments into a single Variant
array. This function is typically used for creating a varargin cell from a list
of separate inputs. Each input in the list is added to the array only if it is not
empty or missing. (In Visual Basic, a missing parameter is denoted by a
Variant type of vbError with a value of &H80020004.)

Parameters.

Argument Type Description

pVarArg Variant Receives the resulting
array

[Var0], [Var1], ... Variant Optional list of
Variants to pack into
the array. From 0 to
32 arguments can be
passed.

Return Value. None.

Remarks. This function always frees the contents of pVarArg before
processing the list.

Example. This example uses MWPack in a formula function to produce a
varargin cell to pass as an input parameter to a method compiled from a
MATLAB function with the signature

16-7

16 Utility Library for Microsoft® COM Components

function y = mysum(varargin)
y = sum([varargin{:}]);

The function returns the sum of the elements in varargin. Assume that this
function is a method of a class named myclass that is included in a component
named mycomponent with a version of 1.0. The Visual Basic function allows
up to 10 inputs, and returns the result y. If an error occurs, the function
returns the error string. This function assumes that MWInitApplication
has been previously called.

Function mysum(Optional V0 As Variant, _
Optional V1 As Variant, _
Optional V2 As Variant, _
Optional V3 As Variant, _
Optional V4 As Variant, _
Optional V5 As Variant, _
Optional V6 As Variant, _
Optional V7 As Variant, _
Optional V8 As Variant, _
Optional V9 As Variant) As Variant

Dim y As Variant
Dim varargin As Variant
Dim aClass As Object
Dim aUtil As Object

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aUtil.MWPack(varargin,V0,V1,V2,V3,V4,V5,V6,V7,V8,V9)
Call aClass.mysum(1, y, varargin)
mysum = y
Exit Function

Handle_Error:
mysum = Err.Description

End Function

16-8

Utility Library Classes

Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As
Boolean = False], [pVar0], [pVar1], ..., [pVar31])
Unpacks an array of Variants into individual Variant arguments. This
function provides the reverse functionality of MWPack and is typically used to
process a varargout cell into individual Variants.

Parameters.

Argument Type Description

VarArg Variant Input array of Variants
to be processed

nStartAt Long Optional starting
index (zero-based)
in the array to begin
processing. Default = 0.

bAutoResize Boolean Optional auto-resize
flag. If this flag is
True, any Excel range
output arguments
are resized to fit the
dimensions of the
Variant to be copied.
The resizing process is
applied relative to the
upper left corner of the
supplied range. Default
= False.

[pVar0],[pVar1],
...

Variant Optional list of
Variants to receive the
array items contained
in VarArg. From 0 to
32 arguments can be
passed.

Return Value. None.

16-9

16 Utility Library for Microsoft® COM Components

Remarks. This function can process a Variant array in one single call or
through multiple calls using the nStartAt parameter.

Example. This example uses MWUnpack to process a varargout cell into
several Excel ranges, while auto-resizing each range. The varargout
parameter is supplied from a method that has been compiled from the
MATLAB function.

function varargout = randvectors
for i=1:nargout

varargout{i} = rand(i,1);
end

This function produces a sequence of nargout random column vectors, with
the length of the ith vector equal to i. Assume that this function is included in
a class named myclass that is included in a component named mycomponent
with a version of 1.0. The Visual Basic subroutine takes no arguments and
places the results into Excel columns starting at A1, B1, C1, and D1. If an
error occurs, a message box displays the error text. This function assumes
that MWInitApplication has been previously called.

Sub GenVectors()
Dim aClass As Object
Dim aUtil As Object
Dim v As Variant
Dim R1 As Range
Dim R2 As Range
Dim R3 As Range
Dim R4 As Range

On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Set R1 = Range("A1")
Set R2 = Range("B1")
Set R3 = Range("C1")
Set R4 = Range("D1")
Call aClass.randvectors(4, v)
Call aUtil.MWUnpack(v,0,True,R1,R2,R3,R4)
Exit Sub

16-10

Utility Library Classes

Handle_Error:
MsgBox (Err.Description)

End Sub

Sub MWDate2VariantDate(pVar)
Converts output dates from MATLAB to Variant dates.

Parameters.

Argument Type Description

pVar Variant Variant to be converted

Return Value. None.

Remarks. MATLAB handles dates as double-precision floating-point
numbers with 0.0 representing 0/0/00 00:00:00. By default, numeric dates
that are output parameters from compiled MATLAB functions are passed
as Doubles that need to be decremented by the COM date bias as well as
coerced to COM dates. The MWDate2VariantDate method performs this
transformation and additionally converts dates in string form to COM date
types.

Example. This example uses MWDate2VariantDate to process numeric dates
returned from a method compiled from the following MATLAB function.

function x = getdates(n, inc)
y = now;
for i=1:n

x(i,1) = y + (i-1)*inc;
end

This function produces an n-length column vector of numeric values
representing dates starting from the current date and time with each element
incremented by inc days. Assume that this function is included in a class
named myclass that is included in a component named mycomponent with
a version of 1.0. The subroutine takes an Excel range and a Double as
inputs and places the generated dates into the supplied range. If an error

16-11

16 Utility Library for Microsoft® COM Components

occurs, a message box displays the error text. This function assumes that
MWInitApplication has been previously called.

Sub GenDates(R As Range, inc As Double)
Dim aClass As Object
Dim aUtil As Object

On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aClass.getdates(1, R, R.Rows.Count, inc)
Call aUtil.MWDate2VariantDate(R)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWFlags
The MWFlags class contains a set of array formatting and data conversion
flags (See “Data Conversion Rules” on page 10-4 for more information on
conversion between MATLAB and COM Automation types.) All MATLAB
Builder NE COM components contain a reference to an MWFlags object that
can modify data conversion rules at the object level. This class contains these
properties and method:

• “Property ArrayFormatFlags As MWArrayFormatFlags” on page 16-12

• “Property DataConversionFlags As MWDataConversionFlags” on page
16-15

• “Sub Clone(ppFlags As MWFlags)” on page 16-18

Property ArrayFormatFlags As MWArrayFormatFlags
The ArrayFormatFlags property controls array formatting (as a matrix
or a cell array) and the application of these rules to nested arrays. The
MWArrayFormatFlags class is a noncreatable class accessed through an
MWFlags class instance. This class contains six properties:

• “Property InputArrayFormat As mwArrayFormat” on page 16-13

16-12

Utility Library Classes

• “Property InputArrayIndFlag As Long” on page 16-14

• “Property OutputArrayFormat As mwArrayFormat” on page 16-14

• “Property OutputArrayIndFlag As Long” on page 16-15

• “Property AutoResizeOutput As Boolean” on page 16-15

• “Property TransposeOutput As Boolean” on page 16-15

Property InputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as input parameters
to .NET Builder class methods. The default value is mwArrayFormatMatrix.
The behaviors indicated by this flag are listed in the next table.

Array Formatting Rules for Input Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed in
“Data Conversion Rules” on page
10-4.

mwArrayFormatCell Coerces all arrays into cell arrays.
Input scalar or numeric array
arguments are converted to cell
arrays with each cell containing a
scalar value for the respective index.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an input argument is
encountered that is an array of
Variants (the default behavior is
to convert it to a cell array), the
data converter converts this array
to a matrix if each Variant is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible,
creates a cell array.

16-13

16 Utility Library for Microsoft® COM Components

Property InputArrayIndFlag As Long. This property governs the level at
which to apply the rule set by the InputArrayFormat property for nested
arrays (an array of Variants is passed and each element of the array is an
array itself). It is not necessary to modify this flag for varargin parameters.
The data conversion code automatically increments the value of this flag by
1 for varargin cells, thus applying the InputArrayFormat flag to each cell
of a varargin parameter. The default value is 0.

Property OutputArrayFormat As mwArrayFormat. This property of
type mwArrayFormat controls the formatting of arrays passed as output
parameters to MATLAB Builder NE class methods. The default value is
mwArrayFormatAsIs. The behaviors indicated by this flag are listed in the
next table.

Array Formatting Rules for Output Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed in
“Data Conversion Rules” on page
10-4.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an output cell array argument
is encountered (the default behavior
converts it to an array of Variants),
the data converter converts this
array to a Variant that contains a
simple numeric array if each cell is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible, an
array of Variants is created.

mwArrayFormatCell Coerces all output arrays into
arrays of Variants. Output scalar
or numeric array arguments are
converted to arrays of Variants,
each Variant containing a scalar
value for the respective index.

16-14

Utility Library Classes

Property OutputArrayIndFlag As Long. This property is similar to the
InputArrayIndFalg property, as it governs the level at which to apply the
rule set by the OutputArrayFormat property for nested arrays. As with
the input case, this flag is automatically incremented by 1 for a varargout
parameter. The default value of this flag is 0.

Property AutoResizeOutput As Boolean. This flag applies to Excel ranges
only. When the target output from a method call is a range of cells in an Excel
worksheet, and the output array size and shape is not known at the time of the
call, setting this flag to True instructs the data conversion code to resize each
Excel range to fit the output array. Resizing is applied relative to the upper
left corner of each supplied range. The default value for this flag is False.

Property TransposeOutput As Boolean. Setting this flag to True
transposes the output arguments. This flag is useful when processing an
output parameter from a method call on a COM component, where the
MATLAB function returns outputs as row vectors, and you desire to place the
data into columns. The default value for this flag is False.

Property DataConversionFlags As MWDataConversionFlags
The DataConversionFlags property controls how input variables are
processed when type coercion is needed. The MWDataConversionFlags class
is a noncreatable class accessed through an MWFlags class instance. This
class contains these properties:

• “Property CoerceNumericToType As mwDataType” on page 16-16

• “PropertyDateBias As Long” on page 16-16

• “Property InputDateFormat As mwDateFormat” on page 16-17

• “PropertyOutputAsDate As Boolean” on page 16-17

• “ReplaceMissing As mwReplaceMissingData” on page 16-18

16-15

16 Utility Library for Microsoft® COM Components

Property CoerceNumericToType As mwDataType. This property
converts all numeric input arguments to one specific MATLAB type. This
flag is useful is when variables maintained within the Visual Basic code are
different types, e.g., Long, Integer, etc., and all variables passed to the
compiled MATLAB code must be doubles. The default value for this property
is mwTypeDefault, which uses the default rules in “Data Conversion Rules”
on page 10-4.

PropertyDateBias As Long. This property sets the date bias for performing
COM to MATLAB numeric date conversions. The default value of this
property is 693960, representing the difference between the COM Date type
and MATLAB numeric dates. This flag allows existing MATLAB code that
already performs the increment of numeric dates by 693960 to be used
unchanged with COM components created by MATLAB Builder NE. To
process dates with such code, set this property to 0.

This example uses data conversion flags to reshape the output from a
method compiled from a MATLAB function that produces an output vector of
unknown length.

function p = myprimes(n)
if length(n)~=1, error('N must be a scalar'); end
if n < 2, p = zeros(1,0); return, end
p = 1:2:n;
q = length(p);
p(1) = 2;
for k = 3:2:sqrt(n)

if p((k+1)/2)
p(((k*k+1)/2):k:q) = 0;

end
end
p = (p(p>0));

This function produces a row vector of all the prime numbers between 0 and
n. Assume that this function is included in a class named myclass that
is included in a component named mycomponent with a version of 1.0. The
subroutine takes an Excel range and a Double as inputs, and places the
generated prime numbers into the supplied range. The MATLAB function
produces a row vector, although you want the output in column format. It also
produces an unknown number of outputs, and you do not want to truncate

16-16

Utility Library Classes

any output. To handle these issues, set the TransposeOutput flag and the
AutoResizeOutput flag to True. In previous examples, the Visual Basic
CreateObject function creates the necessary classes. This example uses an
explicit type declaration for the aClass variable. As with previous examples,
this function assumes that MWInitApplication has been previously called.

Sub GenPrimes(R As Range, n As Double)
Dim aClass As mycomponent.myclass

On Error GoTo Handle_Error
Set aClass = New mycomponent.myclass
aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True
aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
Call aClass.myprimes(1, R, n)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Property InputDateFormat As mwDateFormat. This property converts
dates passed as input parameters to method calls on .NET Builder classes.
The default value is mwDateFormatNumeric. The behaviors indicated by this
flag are shown in the following table.

Conversion Rules for Input Dates

Value Behavior

mwDateFormatNumeric Convert dates to numeric values as
indicated by the rule listed in “Data
Conversion Rules” on page 10-4.

mwDateFormatString Convert input dates to strings.

PropertyOutputAsDate As Boolean. This property processes an output
argument as a date. By default, numeric dates that are output parameters
from compiled MATLAB functions are passed as Doubles that need to be
decremented by the COM date bias (693960) as well as coerced to COM dates.
Set this flag to True to convert all output values of type Double.

16-17

16 Utility Library for Microsoft® COM Components

ReplaceMissing As mwReplaceMissingData. This property is an
enumeration and can have two possible values: mwReplaceNaN and
mwReplaceZero.

To treat empty cells referenced by input parameters as zeros, set the value to
mwReplaceZero. To treat empty cells referenced by input parameters as NaNs
(Not a Number), set the value to mwReplaceNaN.

By default, the value is mwReplaceZero.

Sub Clone(ppFlags As MWFlags)
Creates a copy of an MWFlags object.

Parameters.

Argument Type Description

ppFlags MWFlags Reference to an
uninitialized MWFlags
object that receives the
copy

Return Value. None

Remarks. Clone allocates a new MWFlags object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWStruct
The MWStruct class passes or receives a Struct type to or from a compiled
class method. This class contains seven properties/methods:

• “Sub Initialize([varDims], [varFieldNames])” on page 16-19

• “Property Item([i0], [i1], ..., [i31]) As MWField” on page 16-20

• “Property NumberOfFields As Long” on page 16-23

• “Property NumberOfDims As Long” on page 16-23

16-18

Utility Library Classes

• “Property Dims As Variant” on page 16-23

• “Property FieldNames As Variant” on page 16-23

• “Sub Clone(ppStruct As MWStruct)” on page 16-24

Sub Initialize([varDims], [varFieldNames])
This method allocates a structure array with a specified number and size of
dimensions and a specified list of field names.

Parameters.

Argument Type Description

varDims Variant Optional array of
dimensions

varFieldNames Variant Optional array of field
names

Return Value. None.

Remarks. When created, an MWStruct object has a dimensionality of 1-by-1
and no fields. The Initialize method dimensions the array and adds a set of
named fields to each element. Each time you call Initialize on the same
object, it is redimensioned. If you do not supply the varDims argument, the
existing number and size of the array’s dimensions unchanged. If you do not
supply the varFieldNames argument, the existing list of fields is not changed.
Calling Initialize with no arguments leaves the array unchanged.

Example. The following Visual Basic code illustrates use of the Initialize
method to dimension struct arrays.

Sub foo ()
Dim x As MWStruct
Dim y As MWStruct

On Error Goto Handle_Error
'Create 1X1 struct arrays with no fields for x, and y
Set x = new MWStruct
Set y = new MWStruct

16-19

16 Utility Library for Microsoft® COM Components

'Initialize x to be 2X2 with fields "red", "green",
' and "blue"
Call x.Initialize(Array(2,2), Array("red", "green", "blue"))
'Initialize y to be 1X5 with fields "name" and "age"
Call y.Initialize(5, Array("name", "age"))

'Re-dimension x to be 3X3 with the same field names
Call x.Initialize(Array(3,3))

'Add a new field to y
Call y.Initialize(, Array("name", "age", "salary"))

Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Property Item([i0], [i1], ..., [i31]) As MWField
The Item property is the default property of the MWStruct class. This property
is used to set/get the value of a field at a particular index in the structure
array.

Parameters.

Argument Type Description

i0,i1, ..., i31 Variant Optional index
arguments. Between 0
and 32 index arguments
can be entered. To
reference an element
of the array, specify all
indexes as well as the
field name.

16-20

Utility Library Classes

Remarks. When accessing a named field through this property, you must
supply all dimensions of the requested field as well as the field name. This
property always returns a single field value, and generates a bad index error
if you provide an invalid or incomplete index list. Index arguments have
four basic formats:

• Field name only

This format may be used only in the case of a 1-by-1 structure array and
returns the named field’s value. For example:

x("red") = 0.2
x("green") = 0.4
x("blue") = 0.6

In this example, the name of the Item property was neglected. This is
possible since the Item property is the default property of the MWStruct
class. In this case the two statements are equivalent:

x.Item("red") = 0.2
x("red") = 0.2

• Single index and field name

This format accesses array elements through a single subscripting notation. A
single numeric index n followed by the field name returns the named field on
the nth array element, navigating the array linearly in column-major order.
For example, consider a 2-by-2 array of structures with fields "red", "green"
, and "blue" stored in a variable x. These two statements are equivalent:

y = x(2, "red")
y = x(2, 1, "red")

• All indices and field name

This format accesses an array element of an multidimensional array by
specifying n indices. These statements access all four of the elements of the
array in the previous example:

For I From 1 To 2
For J From 1 To 2

16-21

16 Utility Library for Microsoft® COM Components

r(I, J) = x(I, J, "red")
g(I, J) = x(I, J, "green")
b(I, J) = x(I, J, "blue")

Next
Next

• Array of indices and field name

This format accesses an array element by passing an array of indices and a
field name. The next example rewrites the previous example using an index
array:

Dim Index(1 To 2) As Integer

For I From 1 To 2
Index(1) = I
For J From 1 To 2

Index(2) = J
r(I, J) = x(Index, "red")
g(I, J) = x(Index, "green")
b(I, J) = x(Index, "blue")

Next
Next

With these four formats, the Item property provides a very flexible indexing
mechanism for structure arrays. Also note:

• You can combine the last two indexing formats. Several index arguments
supplied in either scalar or array format are concatenated to form one
index set. The combining stops when the number of dimensions has been
reached. For example:

Dim Index1(1 To 2) As Integer
Dim Index2(1 To 2) As Integer

Index1(1) = 1
Index1(2) = 1
Index2(1) = 3
Index2(2) = 2
x(Index1, Index2, 2, "red") = 0.5

16-22

Utility Library Classes

The last statement resolves to

x(1, 1, 3, 2, 2, "red") = 0.5

• The field name must be the last index in the list. The following statement
produces an error:

y = x("blue", 1, 2)

• Field names are case sensitive.

Property NumberOfFields As Long
The read-only NumberOfFields property returns the number of fields in the
structure array.

Property NumberOfDims As Long
The read-only NumberOfDims property returns the number of dimensions in
the struct array.

Property Dims As Variant
The read-only Dims property returns an array of length NumberOfDims that
contains the size of each dimension of the struct array.

Property FieldNames As Variant
The read-only FieldNames property returns an array of length
NumberOfFields that contains the field names of the elements of the structure
array.

Example. The next Visual Basic code sample illustrates how to access a
two-dimensional structure array’s fields when the field names and dimension
sizes are not known in advance.

Sub foo ()
Dim x As MWStruct
Dim Dims as Variant
Dim FieldNames As Variant

16-23

16 Utility Library for Microsoft® COM Components

On Error Goto Handle_Error
'
'... Call a method that returns an MWStruct in x
'
Dims = x.Dims
FieldNames = x.FieldNames
For I From 1 To Dims(1)

For J From 1 To Dims(2)
For K From 1 To x.NumberOfFields

y = x(I,J,FieldNames(K))
' ... Do something with y

Next
Next

Next
Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Sub Clone(ppStruct As MWStruct)
Creates a copy of an MWStruct object.

Parameters.

Argument Type Description

ppStruct MWStruct Reference to an
uninitialized MWStruct
object to receive the
copy

Return Value. None

Remarks. Clone allocates a new MWStruct object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

16-24

Utility Library Classes

Example. The following Visual Basic example illustrates the difference
between assignment and Clone for MWStruct objects.

Sub foo ()
Dim x1 As MWStruct
Dim x2 As MWStruct
Dim x3 As MWStruct

On Error Goto Handle_Error
Set x1 = new MWStruct
x1("name") = "John Smith"
x1("age") = 35

'Set reference of x1 to x2
Set x2 = x1

'Create new object for x3 and copy contents of x1 into it
Call x1.Clone(x3)

'x2's "age" field is
'also modified 'x3's "age" field unchanged
x1("age") = 50

.

.

.
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Class MWField
The MWField class holds a single field reference in an MWStruct object. This
class is noncreatable and contains four properties/methods:

• “Property Name As String” on page 16-26

• “Property Value As Variant” on page 16-26

• “Property MWFlags As MWFlags” on page 16-26

• “Sub Clone(ppField As MWField)” on page 16-26

16-25

16 Utility Library for Microsoft® COM Components

Property Name As String
The name of the field (read only).

Property Value As Variant
Stores the field’s value (read/write). The Value property is the default
property of the MWField class. The value of a field can be any type that is
coercible to a Variant, as well as object types.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular field. Each field in a
structure has its own MWFlags property. This property overrides the value of
any flags set on the object whose methods are called.

Sub Clone(ppField As MWField)
Creates a copy of an MWField object.

Parameters.

Argument Type Description

ppField MWField Reference to an
uninitialized MWField
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWField object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWComplex
The MWComplex class passes or receives a complex numeric array into or from
a compiled class method. This class contains four properties/methods:

16-26

Utility Library Classes

• “Property Real As Variant” on page 16-27

• “Property Imag As Variant” on page 16-27

• “Property MWFlags As MWFlags” on page 16-28

• “Sub Clone(ppComplex As MWComplex)” on page 16-28

Property Real As Variant
Stores the real part of a complex array (read/write). The Real property is the
default property of the MWComplex class. The value of this property can be any
type coercible to a Variant, as well as object types, with the restriction that
the underlying array must resolve to a numeric matrix (no cell data allowed).
Valid Visual Basic numeric types for complex arrays include Byte, Integer,
Long, Single, Double, Currency, and Variant/vbDecimal.

Property Imag As Variant
Stores the imaginary part of a complex array (read/write). The Imag property
is optional and can be Empty for a pure real array. If the Imag property is not
empty and the size and type of the underlying array do not match the size
and type of the Real property’s array, an error results when the object is
used in a method call.

Example. The following Visual Basic code creates a complex array with
the following entries:

x = [1+i 1+2i
2+i 2+2i]

Sub foo()
Dim x As MWComplex
Dim rval(1 To 2, 1 To 2) As Double
Dim ival(1 To 2, 1 To 2) As Double

On Error Goto Handle_Error
For I = 1 To 2

For J = 1 To 2
rval(I,J) = I
ival(I,J) = J

Next
Next

16-27

16 Utility Library for Microsoft® COM Components

Set x = new MWComplex
x.Real = rval
x.Imag = ival

.

.

.
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular complex array. Each
MWComplex object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

Sub Clone(ppComplex As MWComplex)
Creates a copy of an MWComplex object.

Parameters.

Argument Type Description

ppComplex MWComplex Reference to
an uninitialized
MWComplex object to
receive the copy

Return Value. None

Remarks. Clone allocates a new MWComplex object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

16-28

Utility Library Classes

Class MWSparse
The MWSparse class passes or receives a two-dimensional sparse numeric array
into or from a compiled class method. This class has seven properties/methods:

• “Property NumRows As Long” on page 16-29

• “Property NumColumns As Long” on page 16-29

• “Property RowIndex As Variant” on page 16-29

• “Property ColumnIndex As Variant” on page 16-29

• “Property Array As Variant” on page 16-30

• “Property MWFlags As MWFlags” on page 16-30

• “Sub Clone(ppSparse As MWSparse)” on page 16-30

Property NumRows As Long
Stores the row dimension for the array. The value of NumRows must be
nonnegative. If the value is zero, the row index is taken from the maximum
of the values in the RowIndex array.

Property NumColumns As Long
Stores the column dimension for the array. The value of NumColumns must be
nonnegative. If the value is zero, the row index is taken from the maximum of
the values in the ColumnIndex array.

Property RowIndex As Variant
Stores the array of row indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object
types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumRows is nonzero
and any row index is greater than NumRows, a bad-index error occurs. An error
also results if the number of elements in the RowIndex array does not match
the number of elements in the Array property’s underlying array.

Property ColumnIndex As Variant
Stores the array of column indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object

16-29

16 Utility Library for Microsoft® COM Components

types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumColumns is
nonzero and any column index is greater than NumColumns, a bad-index error
occurs. An error also results if the number of elements in the ColumnIndex
array does not match the number of elements in the Array property’s
underlying array.

Property Array As Variant
Stores the nonzero array values of the sparse array. The value of this
property can be any type coercible to a Variant, as well as object types, with
the restriction that the underlying array must resolve to or be coercible to a
numeric matrix of type Double or Boolean.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular sparse array. Each
MWSparse object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

Sub Clone(ppSparse As MWSparse)
Creates a copy of an MWSparse object.

Parameters.

Argument Type Description

ppSparse MWSparse Reference to an
uninitialized MWSparse
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWSparse object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

16-30

Utility Library Classes

Example. The following Visual Basic sample creates a 5-by-5 tridiagonal
sparse array with the following entries:

X = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

Sub foo()
Dim x As MWSparse
Dim rows(1 To 13) As Long
Dim cols(1 To 13) As Long
Dim vals(1 To 13) As Double
Dim I As Long, K As Long

On Error GoTo Handle_Error
K = 1
For I = 1 To 4

rows(K) = I
cols(K) = I + 1
vals(K) = -1
K = K + 1
rows(K) = I
cols(K) = I
vals(K) = 2
K = K + 1
rows(K) = I + 1
cols(K) = I
vals(K) = -1
K = K + 1

Next
rows(K) = 5
cols(K) = 5
vals(K) = 2
Set x = New MWSparse
x.NumRows = 5
x.NumColumns = 5
x.RowIndex = rows
x.ColumnIndex = cols

16-31

16 Utility Library for Microsoft® COM Components

x.Array = vals
.
.
.

Exit Sub
Handle_Error:

MsgBox (Err.Description)
End Sub

Class MWArg
The MWArg class passes a generic argument into a compiled class method. This
class passes an argument for which the data conversion flags are changed for
that one argument. This class has three properties/methods:

• “Property Value As Variant” on page 16-32

• “Property MWFlags As MWFlags” on page 16-32

• “Sub Clone(ppArg As MWArg)” on page 16-32

Property Value As Variant
The Value property stores the actual argument to pass. Any type that can be
passed to a compiled method is valid for this property.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular argument. Each MWArg
object has its own MWFlags property. This property overrides the value of any
flags set on the object whose methods are called.

Sub Clone(ppArg As MWArg)
Creates a copy of an MWArg object.

16-32

Utility Library Classes

Parameters.

Argument Type Description

ppArg MWArg Reference to an
uninitialized MWArg
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWArg object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

16-33

16 Utility Library for Microsoft® COM Components

Enumerations

In this section...

“Enum mwArrayFormat” on page 16-34

“Enum mwDataType” on page 16-34

“Enum mwDateFormat” on page 16-35

Enum mwArrayFormat
The mwArrayFormat enumeration is a set of constants that denote an array
formatting rule for data conversion.

mwArrayFormat Values

Constant Numeric Value Description

mwArrayFormatAsIs 0 Do not reformat the
array.

mwArrayFormatMatrix 1 Format the array as a
matrix.

mwArrayFormatCell 2 Format the array as a
cell array.

Enum mwDataType
The mwDataType enumeration is a set of constants that denote a MATLAB
numeric type.

mwDataType Values

Constant Numeric Value MATLAB Type

mwTypeDefault 0 Not applicable

mwTypeLogical 3 logical

mwTypeChar 4 char

mwTypeDouble 6 double

16-34

Enumerations

mwDataType Values (Continued)

Constant Numeric Value MATLAB Type

mwTypeSingle 7 single

mwTypeInt8 8 int8

mwTypeUint8 9 uint8

mwTypeInt16 10 int16

mwTypeUint16 11 uint16

mwTypeInt32 12 int32

mwTypeUint32 13 uint32

Enum mwDateFormat
The mwDateFormat enumeration is a set of constants that denote a formatting
rule for dates.

mwDateFormat Values

Constant Numeric Value Description

mwDateFormatNumeric 0 Format dates as
numeric values

mwDateFormatString 1 Format dates as strings

16-35

16 Utility Library for Microsoft® COM Components

16-36

A

Examples

Use this list to find examples in the documentation.

A Examples

Magic Square Example for .NET
“The Magic Square Example” on page 1-9

A-2

Using Load and Save

Using Load and Save
“Using Load/Save Functions to Process MATLAB Data for Deployed
Applications” on page 2-22

A-3

A Examples

Creating a .NET Component Namespace
“Creating a .NET Component Namespace” on page 3-6

A-4

Adding Multiple Classes to a Component

Adding Multiple Classes to a Component
“Adding Multiple Classes to a Component” on page 3-6

A-5

A Examples

Automatic Casting to Types
“Automatic Casting to MATLAB Types” on page 4-7

A-6

Multidimensional Array Processing in MATLAB and .NET

Multidimensional Array Processing in MATLAB and .NET
“Multidimensional Array Processing in MATLAB and .NET” on page 4-8

A-7

A Examples

Native Data Conversion
“Native Data Conversion” on page 4-9

A-8

Return Value Handling

Return Value Handling
“Return Value Handling” on page 4-13

A-9

A Examples

Using functions engOpen and engEvalString from the
MATLAB Engine API in a C# Program

“MATLAB Engine API in a C# Program” on page 4-18

A-10

Handling Data

Handling Data
“Passing a .NET Object into a MATLAB® Builder™ NE Component” on
page 4-20
“Returning a Custom .NET Object in a MATLAB Function Using a
Deployed .NET Builder Component ” on page 4-20

A-11

A Examples

Initializing and Populating a Jagged Array
“Jagged Array Processing” on page 4-24

A-12

Using WaitForFiguresToDie to Block Execution

Using WaitForFiguresToDie to Block Execution
“Using WaitForFiguresToDie to Block Execution” on page 4-27

A-13

A Examples

Sample Applications (C#)
“Simple Plot Example” on page 4-31
“Passing Variable Arguments” on page 4-36
“Spectral Analysis Example” on page 4-41
“Matrix Math Example” on page 4-48
“Phonebook Example” on page 4-56
“Optimization Example” on page 4-63

A-14

Sample Applications (Visual Basic .NET)

Sample Applications (Visual Basic .NET)
“Magic Square Example (Visual Basic)” on page 4-70
“Create Plot Example (Visual Basic)” on page 4-74
“Variable Arguments Example (Visual Basic)” on page 4-78
“Spectral Analysis Example (Visual Basic)” on page 4-81
“Matrix Math Example (Visual Basic)” on page 4-86
“Phonebook Example (Visual Basic)” on page 4-90

A-15

A Examples

Sample Applications (Visual Basic)
“Optimization Example (Visual Basic)” on page 4-97

A-16

Sample Applications (Java)

Sample Applications (Java)
“Optimization Example” on page 4-97

A-17

A Examples

Using the MCR Data Interface
“The MCR User Data Interface” on page 5-12

A-18

Supplying Run-Time Configuration Information for Parallel Computing Toolbox Applications

Supplying Run-Time Configuration Information for Parallel
Computing Toolbox Applications

“Supplying Cluster Profiles for Parallel Computing Toolbox Applications”
on page 5-12

A-19

A Examples

Implementing a Type-Safe Interface
“Implementing a Type-Safe Interface” on page 6-7

A-20

Deploying a WCF-Based Component

Deploying a WCF-Based Component
“Deploying a WCF-Based Component” on page 6-19

A-21

A Examples

Quick Start to Implementing a WebFigure
“Quick Start Implementation of WebFigures” on page 7-6

A-22

Working with Functions that Return a Single WebFigure as the Function’s Only Output

Working with Functions that Return a Single WebFigure
as the Function’s Only Output

“Working with Functions that Return a Single WebFigure as the Function’s
Only Output” on page 7-18

A-23

A Examples

Working With Functions That Return Multiple WebFigures
In an Array as the Output

“Working With Functions That Return Multiple WebFigures In an Array
as the Output” on page 7-19

A-24

Attaching a WebFigure

Attaching a WebFigure
“Attaching a WebFigure” on page 7-21

A-25

A Examples

Referencing a WebFigure Attached to the Local Server
“Referencing a WebFigure Attached to the Local Server” on page 7-25

A-26

Referencing a WebFigure Attached to a Remote Server

Referencing a WebFigure Attached to a Remote Server
“Referencing a WebFigure Attached to a Remote Server” on page 7-26

A-27

A Examples

Using Global Assembly Cache (Global.asax) to Create
WebFigures at Server Start-Up

“Using Global Assembly Cache (Global.asax) to Create WebFigures at
Server Start-Up” on page 7-27

A-28

Creating and Modifying a MATLAB Figure

Creating and Modifying a MATLAB Figure
“Creating and Modifying a MATLAB Figure” on page 7-32

A-29

A Examples

Working with MATLAB Figures
“Working with Figures” on page 7-35

A-30

Working with Images

Working with Images
“Working with Images” on page 7-36

A-31

A Examples

Building a Remotable Component Using the Deployment
Tool

“Building a Remotable Component Using the Deployment Tool” on page 8-8

A-32

Building a Remotable Component Using the mcc Command

Building a Remotable Component Using the mcc Command
“Building a Remotable Component Using the mcc Command” on page 8-12

A-33

A Examples

Using Native .NET Structure and Cell Arrays
“Coding and Building the Client Application and Configuration File with
the Native MWArray, MWStructArray, and MWCellArray Classes ” on
page 8-36

A-34

COM Components

COM Components
“Building a Deployable COM Component” on page 12-2
“Packaging a Deployable COM Component” on page 12-3
“Calling a COM Object in a Visual C++ Program” on page 13-12
“Creating and Using a varargin Array in Microsoft® Visual Basic®

Programs” on page 13-21
“Creating and Using varargout in Microsoft® Visual Basic® Programs” on
page 13-22
“Using Array Formatting Flags” on page 13-25
“Using Data Conversion Flags” on page 13-28
“Blocking Execution of a Console Application That Creates Figures” on
page 13-34
“Magic Square Example” on page 14-2
“Creating an Excel Add-in: Spectral Analysis Example” on page 14-9
“Univariate Interpolation Example” on page 14-25
“Matrix Calculator Example” on page 14-33
“Curve Fitting Example” on page 14-44
“Bouncing Ball Simulation Example” on page 14-52

A-35

A Examples

Utility Library Classes for COM Components
Chapter 16, “Utility Library for Microsoft COM Components”

A-36

Deploying .NET Components With the F# Programming Language

Deploying .NET Components With the F# Programming
Language

“The Magic Square Example Using F#” on page B-2

A-37

A Examples

A-38

B

Deploying .NET
Components With the
F# Programming Language

B Deploying .NET Components With the F# Programming Language

The Magic Square Example Using F#
The F# programming language offers the opportunity to implement the same
solutions you usually implement using C#, but with less code. This can
be helpful when scaling a deployment solution across an enterprise-wide
installation, or in any situation where code efficiency is valued. The brevity of
F# programs can also make them easier to maintain.

The following example summarizes how to integrate the deployable MATLAB
magic function from “The Magic Square Example” on page 1-9 in Chapter 1,
“Getting Started” of this user’s guide.

You must be running Microsoft Visual Studio 2010 or higher to use this
example.

For more information about the F# language, go to http://fsharp.net.

Prerequisites
If you build this example on a system running 64-bit Microsoft Visual Studio,
you must add a reference to the 32-bit MWArray DLL due to a current imitation
of Microsoft’s F# compiler.

Step 1: Build the Component
Build the makeSqr component using the instructions in “Creating a .NET
Component From MATLAB Code” on page 1-11 in Chapter 1, “Getting
Started” of this user’s guide.

Step 2: Integrate the Component Into an F#
Application

1 Using Microsoft Visual Studio 2010 or higher, create an F# project.

2 Add references to your component and MWArray in Visual Studio. For
examples of how to do this, see “Creating a Reference to Your Component”
on page 1-28 and “Creating a Reference to the MWArray API” on page 1-28
in this user’s guide.

B-2

http://en.wikipedia.org/wiki/F_Sharp_(programming_language)
http://fsharp.net

The Magic Square Example Using F#

3 Make the .NET namespaces available for your component and MWArray
libraries:

open makeSqr
open MathWorks.MATLAB.NET.Arrays

4 Define the Magic Square function with an initial let statement, as follows:

let magic n =

Then, add the following statements to complete the function definition.

a Instantiate the Magic Square component:

use magicComp = new makeSqr.MLTestClass()

b Define the input argument:

use inarg = new MWNumericArray((int) n)

c Call MATLAB, get the output argument cell array, and extract the first
element as a two–dimensional float array:

(magicComp.makesquare(1, inarg).[0].ToArray() :?> float[,])

The complete function definition looks like this:

let magic n =
// Instantiate the magic square component
use magicComp = new makeSqr.MLTestClass()
// Define the input argument
use inarg = new MWNumericArray((int) n)
// Call MATLAB, get the output argument cell array,
// extract the first element as a 2D float array
(magicComp.makesquare(1, inarg).[0].ToArray()

:?> float[,])

5 Add another let statement to define the output display logic:

let printMagic n =
let numArray = magic n
// Display the output

B-3

B Deploying .NET Components With the F# Programming Language

printfn "Number of [rows,cols]: [%d,%d]"
(numArray.GetLength(0)) (numArray.GetLength(1))

printfn ""
for i in 0 .. numArray.GetLength(0)-1 do

for j in 0 .. numArray.GetLength(1)-1 do
printf "%3.0f " numArray.[i,j]

printfn ""
printfn "=========================\n"

ignore(List.iter printMagic [1..19])
// Pause until keypress
ignore(System.Console.ReadKey())

The complete program listing follows:

The F# Magic Square Program

open makeSqr
open MathWorks.MATLAB.NET.Arrays
let magic n =

// Instantiate the magic square component
use magicComp = new makeSqr.MLTestClass()
// Define the input argument
use inarg = new MWNumericArray((int) n)
// Call MATLAB, get the output argument cell array,
// extract the first element as a 2D float array
(magicComp.makesquare(1, inarg).[0].ToArray() :?> float[,])

let printMagic n =
let numArray = magic n
// Display the output
printfn "Number of [rows,cols]: [%d,%d]"

(numArray.GetLength(0)) (numArray.GetLength(1))
printfn ""
for i in 0 .. numArray.GetLength(0)-1 do

for j in 0 .. numArray.GetLength(1)-1 do
printf "%3.0f " numArray.[i,j]

printfn ""
printfn "=========================\n"

B-4

The Magic Square Example Using F#

ignore(List.iter printMagic [1..19])
// Pause until keypress
ignore(System.Console.ReadKey())

Step 3: Deploy the Component
See “Distribute MATLAB Code Using the MATLAB Compiler Runtime (MCR)”
on page 5-2 for information about deploying your component to end users.

B-5

B Deploying .NET Components With the F# Programming Language

B-6

Index

IndexA
access 13-3
Accessibility

DLLs to add to path enabling 10-2
Add-in

Registration of 12-3
Add-in registration 12-3
Administrative privileges

Changing 12-3
Customizing 12-3

Advanced Encryption Standard (AES)
cryptosystem 2-8

Architectures
64-bit and 32-bit compatibility 1-7

array formatting flags 13-24
Array processing

Multidimensional 4-8
MATLAB and .NET 4-8

ASP.NET applications
Impersonation in 5-18

Assistive technologies
DLLs to add to path enabling 10-2

B
build process 2-4

C
capabilities 15-2
Class MWFlags 16-12
Class MWUtil 16-3
class name 4-4
class properties

properties, class 13-31
COM

defined 3-3
COM class

producing 15-23
COM component

as Excel add-in 14-9
registration 15-4
Registration of 12-3
utility classes 16-1
VB examples of creating and using 14-1

COM Components
About 3-2

COM VARIANT 15-9
command line

differences between command-line and
GUI 2-4

command line interface 12-6
Command Line Interface 3-5

Using .NET Bundles to Simply 3-5
Common Language Specification 3-2
Compiler

security 2-8
compilers

supported 10-2
component

access 13-3
component indexing 4-23
Component Object Model (COM)

defined 3-3
Component Technology File (CTF) 2-8
componentinfo function 11-2
Contract interface assembly

Creating in Microsoft Visual Studio 6-39
Converting real or imaginary components

MATLAB arrays and vectors
ToArray 4-24

create phonebook example 4-56 4-90
CreateObject function 13-6
CTF (Component Technology File) archive 2-8
CTF Archive

Controlling management and storage of. 5-9
Embedding in component 5-9

CTF file 2-8

Index-1

Index

D
data conversion

classes for .NET components 10-17
rules for .NET components 10-4
rules for COM components 15-9
utility classes for COM components 16-1

Data Conversion 4-5
data conversion flags 13-24
Data Structure Arrays

Adding Fields 4-25
Data Structures

Adding Fields 4-25
Data Types

Casting in MATLAB® Builder NE 4-7
Dependency Analysis Function 2-4 2-7
depfun 2-4 2-7
Deployment Tool

differences between command-line and
GUI 2-4

Starting from the command line 3-7 11-6
deploytool

differences between command-line and
GUI 2-4

diagnostics 9-4
dispose 4-29
Distributing MATLAB code for sharing 1-16
DLLs 2-8

depfun 2-8
utility classes for COM components 16-1

E
Enumeration

mwArrayFormat 16-34
mwDataType 16-34
mwDateFormat 16-35

enumerations 16-34
error handling 4-28
errors 9-4

COM components 9-4

examples 4-56 4-90
C# 4-31
C# create plot 4-31
Excel add-in 14-9
magic square 14-2

Excel add-in 14-9
exceptions 4-28
Extending applications

using MEF 6-33

F
F# programming language

Example using B-1
MATLAB Builder NE B-1
.NET components B-1

Figures
Keeping open by blocking execution of

console application 4-26
flags

array formatting 13-24
data conversion 13-24

G
Global Assembly Cache (Global.asax) 7-27
global variables 13-31
Global.asax 7-27
Globally Unique Identifier (GUID) 15-5
GUID (Globally Unique Identifier) 15-5

I
IDL mapping 15-23
Impersonation

In ASP.NET applications 5-18

J
Jagged array

in Web processing 4-24

Index-2

Index

initializing 4-24
MWNumericArray processing 4-24
populating 4-24
use of 4-24

Jagged arrays
with WCF 6-24

L
limitations 10-2
Load function 2-21
loadlibrary

(MATLAB function)
Use of 2-19

localhost 8001
Unable to access 6-29

M
magic square example 14-2
Magic Square example

Using F# B-1
managed classes 4-3
Managed Extensibility Framework (MEF) 6-33
.mat file

How to use with compiled applications 2-21
MAT file

How to explicitly include in depfun
analysis 2-21

How to force MATLAB Compiler to inspect
for dependencies 2-21

How to use with compiled applications 2-21
MATLAB Array indexing

About 4-25
MATLAB Builder NE

introduction 1-3
system requirements 10-2

MATLAB Compiler 10-2
build process 2-4
MATLAB Builder NE relationship to 1-3

MATLAB Compiler Runtime (MCR)
defined 1-19 1-23 5-2
Download location of 1-19 1-23 5-2

MATLAB Component Runtime (MCR)
Administrator Privileges, requirement

of 1-24 5-3
Version Compatibility with MATLAB 1-24

5-3
MATLAB Data Conversion

Classes 4-6
MATLAB data files 2-21
MATLAB Data Types

Automatic Casting in MATLAB® Builder
NE 4-7

Casting in MATLAB® Builder NE 4-7
MATLAB file

encrypting 2-8
MATLAB Function Signatures

Application Deployment product processing
of 2-17

MATLAB® Builder NE
Building a Component 1-13
Component and Class Naming

Conventions 4-4
Implementing Component On Another

Computer 4-104
Packaging a Component for distribution 1-16
Using Classes and Methods with 4-3
Using Component in .NET Application

Coding 1-37
Versioning 4-4

MATLAB® Builder™ NE
example of deploying 1-9

matrix math example
C# 4-48

mcc
differences between command-line and

GUI 2-4
MCR 1-19 1-23 1-26 5-2 5-4
MCR Component Cache

Index-3

Index

How to use
Overriding CTF embedding 5-9

MCR Installer 1-19 1-23 5-2
and setting system paths 1-25 5-4
Including with deployment package 1-24 5-3

MCR Instance
Sharing of 13-38
Sharing one 13-38

MCR thread processing
and impersonation

ASP.NET 5-18
MEF 6-33

Building .NET Component for 6-43
Definition of 6-33
How it works 6-33
Managed Extensibility Framework 6-33
Plug-ins

Developing with 6-33
Web links for more information about 6-33

MEF (Managed Extensibility Framework)
About 6-33
Example of implementation 6-35
Prerequisites 6-34

MEF Host
Adding Contract and Attribute references

to 6-41
Creating in Microsoft Visual Studio 6-37

MEF Host Program
Running 6-46
Troubleshooting 6-47

MEF Parts
Creating metadata files 6-43
Creating metadata for 6-43
Installing 6-45
Writing MATLAB functions for 6-41

messages 9-4
Metadata attribute assembly

Creating in Microsoft Visual Studio 6-40
methods

error handling 4-28

MEX-files 2-4 2-7 to 2-8
depfun 2-8

Microsoft Visual Studio 2010
Requirement for MEF feature 6-34

missing parameter 16-7
Multidimensional array processing 4-8
multiple classes 4-41
MWArray

Location of 1-26 5-4
Where to find 1-26 5-4

MWArray class library 10-17
MWArray query

return values 4-15
MWComponentOptions 5-9
MWFlags class 16-12
MWObjectArray 4-22

and AppDomains 4-22
AppDomains 4-22
Application Domains 4-22

mwregsvr
Changing permissions with 12-3
Using 12-3

mwregsvr utility 15-4
MWUtil class 16-3

N
Native .NET API

Cell Arrays, Structs 8-29
Data Structures 8-29

Native data types
Generating interfaces for 6-2

native resources
dispose 4-29

.NET common language Runtime (CLR) 3-2

.NET component
C# examples of creating and using 4-31
instantiating classes 1-32
specifying 1-30
VB examples of creating and using 4-70

Index-4

Index

.NET components
overview of creating 1-9

.NET Components
Built from MATLAB functions and MEF

metadata 6-43
.NET Framework 4.0

Requirement for MEF feature 6-34
New operator 13-7

P
Packaging

About 1-17
Parallel Computing Toolbox

Example
Using MATLAB Builder NE 5-12

Supplying profile information to 5-12
Permissions

Changing 12-3
mwregsvr 12-3
Specifying 12-3

problems 9-4

R
reflection 4-13
Remotable components 8-2
Renderers

in WebFigures 7-2
requirements

system 10-2
restrictions 10-2
return values

handling 4-13
MWArray query 4-15
reflection 4-13

S
Save function 2-21

security 2-8
self-registering component 15-4
shared libraries 2-8

depfun 2-8
shared library 2-8
Singleton MCR

Creating 13-38
Structs StructArrays

Adding fields 4-25
System paths 1-25 5-4

setting of 1-25 5-4
system requirements 10-2

T
troubleshooting 9-4
type library 15-4
Type-safe interface

Using WCF
Example of 6-19

type-safe interfaces
Generation of 6-2
Generation with WCF 6-17

Type-Safe Interfaces
On the Web 6-17
Web 6-17

Type-Safe Web Interfaces 6-17

U
unregistering components 15-4
utility library 16-3

V
VARIANT variable 15-9
version number

components 15-7
versioning rules 15-7
Visual Basic mapping 15-25

Index-5

Index

W
WaitForFiguresToDie 4-26
WCF

Definition of 6-17
Generating type-safe interfaces with 6-17
Web links for more information about 6-17

Web Figure

WebFigure 7-2
WebFigures

Getting image data from a WebFigure 7-37
Supported renderers 7-2

Windows Communication Foundation (WCF)
Generating type-safe interfaces with 6-17

Index-6

	toc
	Getting Started
	Product Description
	Key Features

	Product Overview
	MATLAB Compiler Extension

	MATLAB Builder NE Prerequisites
	Your Role in the .NET Application Deployment Process
	What You Need to Know
	Products, Compilers, and IDE Installation
	Microsoft .NET Framework Installation

	Deployment Target Architectures and Compatibility
	Dependency and Non-Compilable Code Considerations
	For More Information

	The Magic Square Example
	About This Example
	What Is a Magic Square?
	How Do I Access the Examples?
	Watch a Video
	For More Information

	Creating a .NET Component From MATLAB Code
	makesquare Testing
	For More Information

	Deployable Component Creation
	What Gets Built?
	For More Information

	Packaging Your Component (Optional)
	MATLAB Compiler Runtime (MCR) and the MCR Installer
	For More Information

	Copying the Package You Created

	Integrating Your .NET Component In a C# Application
	Gathering Files Needed for Deployment
	Distribute MATLAB Code Using the MATLAB Compiler Runtime (MCR)
	MATLAB Compiler Runtime (MCR) and the MCR Installer
	MCR Prerequisites
	Add the MCR Installer To Your Deployment Package
	Testing with the MCR
	MCR Installation and Setting System Paths

	Integrating Your Component into a .NET Class Using Microsoft Vis
	Creating a Microsoft Visual Studio Project
	Creating a Reference to Your Component
	Creating a Reference to the MWArray API
	Making .NET Namespaces Available for Your Generated Component an
	Initializing Your Classes
	Instantiating Your Classes
	Invoking the Component
	Handling Errors Using Try-Catch Blocks
	For More Information

	Building and Testing the .NET Application with Microsoft Visual
	For More Information

	The Magic Square Component in an Enterprise C# Application

	Next Steps

	MATLAB Code Deployment
	MATLAB Application Deployment Products
	Application Deployment Products and the Deployment Tool
	What Is the Difference Between the Deployment Tool and the mcc C
	How Does MATLAB Compiler Software Build My Application?
	Dependency Analysis Function (depfun)
	MEX-Files, DLLs, or Shared Libraries
	Component Technology File (CTF Archive)
	Additional Details

	Writing Deployable MATLAB Code
	Compiled Applications Do Not Process MATLAB Files at Runtime
	Do Not Rely on Changing Directory or Path to Control the Executi
	Use ismcc and isdeployed Functions To Execute Deployment-Specifi
	Gradually Refactor Applications That Depend on Noncompilable Fun
	Do Not Create or Use Nonconstant Static State Variables
	Get Proper Licenses for Toolbox Functionality You Want to Deploy

	How the Deployment Products Process MATLAB Function Signatures
	MATLAB Function Signature
	MATLAB Programming Basics
	Creating a Deployable MATLAB Function
	Taking Inputs into a Function

	MATLAB Library Loading
	MATLAB Data File (MAT Files)
	Explicitly Including MAT files Using the %#function Pragma
	Load and Save Functions
	Using Load/Save Functions to Process MATLAB Data for Deployed Ap

	MATLAB Objects

	Component Building
	Supported Compilation Targets
	.NET Component
	Common Language Specification (CLS) Compliancy

	COM Components

	The Deployment Tool GUI
	Watch a Video

	The mcc Command Line
	Command-Line Syntax Description
	.NET Bundle Files
	Creating a .NET Component Namespace
	Adding Multiple Classes to a Component

	Using the Deployment Tool GUI from the Command Line

	Examples
	For More Information

	Component Integration
	Common Integration Tasks
	Watch a Video

	Application Coding
	Using C# Code In an Integrated .NET Component
	Classes and Methods
	Component and Class Naming Conventions
	About Version Control

	Data Conversion
	Managing Data Conversion Issues with MATLAB Builder NE Data Conv
	Automatic Casting to MATLAB Types
	Manual Data Conversion from Native Types to MATLAB Types
	Pass Input Arguments
	Construct a Single Input Argument
	Pass a Native .NET Type
	Use the feval Interface
	Usage Example

	Return Value Handling

	MATLAB API Functions in a C# Program
	Overview
	About Building Engine Applications
	MATLAB Engine API in a C# Program

	Object Passing by Reference
	MATLAB Array
	Wrappering and Passing .NET Objects with MWObjectArray
	Calling Clone on MWObjectArray

	Real or Imaginary Components Within Complex Arrays
	Component Extraction
	Returning Values Using Component Indexing
	Assigning Values with Component Indexing
	Converting MATLAB Arrays to .NET Arrays Using Component Indexing

	Jagged Array Processing
	Initializing and Populating a Jagged Array
	Field Additions to Data Structures and Data Structure Arrays
	MATLAB Array Indexing
	Console Application Blocking When Creating Figures
	WaitForFiguresToDie Method
	Using WaitForFiguresToDie to Block Execution

	Error Handling
	Explicitly Freeing Resources With Dispose

	C# Integration Examples
	Simple Plot Example
	Purpose
	Procedure
	PlotApp.cs

	Passing Variable Arguments
	Step-by-Step Procedure
	drawgraph.m
	extractcoords.m
	VarArgApp.cs
	Spectral Analysis Example
	Purpose
	computefft.m
	plotfft.m
	Procedure
	SpectraApp.cs

	Matrix Math Example
	Purpose
	Procedure
	MatrixMathApp.cs
	MATLAB Functions to Be Encapsulated
	cholesky.m
	ludecomp.m
	qrdecomp.m
	Understanding the MatrixMath Program

	Phonebook Example
	Purpose
	Procedure
	PhoneBookApp.cs

	Optimization Example
	Purpose
	OptimizeComp Component
	Procedure

	Microsoft Visual Basic Integration Examples
	Magic Square Example (Visual Basic)
	MagicSquareApp.vb
	Create Plot Example (Visual Basic)
	PlotApp.vb
	Variable Arguments Example (Visual Basic)
	VarArgApp.vb
	Spectral Analysis Example (Visual Basic)
	SpectraApp.vb
	Matrix Math Example (Visual Basic)
	MatrixMathApp.vb
	Phonebook Example (Visual Basic)
	makephone Function
	Procedure
	PhoneBookApp.vb

	Optimization Example (Visual Basic)
	Optimization Example

	Component Access On Another Computer
	For More Information

	Distribute to End Users
	Deploying Components to End Users
	Distribute MATLAB Code Using the MATLAB Compiler Runtime (MCR)
	MATLAB Compiler Runtime (MCR) and the MCR Installer
	MCR Prerequisites
	Add the MCR Installer To Your Deployment Package
	Testing with the MCR
	MCR Installation and Setting System Paths

	MCR Run-Time Options
	What Run-Time Options Can You Specify?
	Getting MCR Option Values Using MWMCR
	Default MCR Options

	MCR Component Cache and CTF Archive Embedding
	Overriding Default Behavior
	For More Information

	The MCR User Data Interface
	Supplying Cluster Profiles for Parallel Computing Toolbox Applic
	Step 1: Write Your Parallel Computing Toolbox Code
	Step 2: Set the Parallel Computing Toolbox Profile
	Step 3: Compile Your Function with the Deployment Tool or the Co
	Step 4: Write the .NET Driver Application

	Impersonation Implementation Using ASP.NET
	Turning On Impersonation in a MATLAB MEX-file
	Turning Off Impersonation in a MATLAB MEX-file
	Code Added to Support Impersonation in ASP.NET Application
	Enhanced XML Documentation Files

	Type-Safe Interfaces, WCF, and MEF
	Type-Safe Interface Generation and Implementation
	Type-Safe Interfaces: An Alternative to Manual Data Marshaling
	Advantages of Implementing a Type-Safe Interface
	How Type-Safe Interfaces Work
	Implementing a Type-Safe Interface
	Write and Test Your MATLAB Code
	Develop Your Interface Using Native .NET Types
	Data Conversion Rules for Using the Type-Safe Interface
	Specifying Outputs
	Independent Ordering of Input and Output Parameters

	Build Your Component and Generate Your Type-Safe API
	Develop a Main Program Using Your Interface
	Where To Find Example Code
	AddMaster.cs Program
	Compile the Main Program
	Run the Main Program

	Windows Communications Foundation (WCF)™-Based Components
	What Is WCF?
	What’s the Difference Between WCF and .NET Remoting?
	For More information About WCF

	Before Running the WCF Example
	Deploying a WCF-Based Component
	Where To Find Example Code
	Write and Test Your MATLAB Code
	Develop Your WCF Interface
	Build Your Component and Generate Your Type-Safe API
	Develop Server Program Using the WCF Interface
	WCF Server Program
	App.config XML file
	Compile the Server Program
	Run the Server Program
	Generate Proxy Code for Clients
	Compile the Client Program
	WCF Client Program
	Run the Client Program

	Managed Extensibility Framework (MEF) Plug-Ins
	What Is MEF?
	Why Use MEF?
	How Does MEF Work?
	For More information About MEF

	MEF Prerequisites
	Addition and Multiplication Applications with MEF
	Where To Find Example Code for MEF
	Create an MEFHost Assembly
	Create a Contract Interface Assembly
	Create a Metadata Attribute Assembly
	Add Contract and Attributes References to MEFHost
	Compile Your Code in Microsoft Visual Studio
	Write MATLAB Functions for MEF Parts
	MEFHost/Multiply/compute.m
	MEFHost/Add/compute.m
	Create Metadata Files
	Build .NET Components from MATLAB Functions and Metadata
	Install MEF Parts
	Run the MEF Host Program
	Do you receive an exception indicating that a type initializer f
	Do you receive an exception indicating that MWArray.dll cannot b
	Do you receive an exception that a particular version of mclmcrr

	Web Deployment of Figures and Images
	WebFigures
	Supported Renderers for WebFigures
	WebFigures Prerequisites
	Your Role in the .NET WebFigure Deployment Process
	What You Need to Know to Implement WebFigures
	Required Products
	Assumptions About the Examples

	Quick Start Implementation of WebFigures
	Overview
	Procedure

	Advanced Configuration of a WebFigure
	Overview
	Manually Installing WebFigureService
	For Versions of IIS Before 7.0
	For IIS 7.0
	Retrieving Multiple WebFigures From a Component
	C#
	Visual Basic
	C#
	Visual Basic

	Attaching a WebFigure
	Setting Up WebFigureControl for Remote Invocation
	Getting an Embeddable String That References a WebFigure Attache
	Improving Processing Times for JavaScript Using Minification
	Using Global Assembly Cache (Global.asax) to Create WebFigures a
	C#
	Visual Basic

	Upgrading Your WebFigures
	Troubleshooting
	Logging Levels

	Creating and Modifying a MATLAB Figure
	Preparing a MATLAB Figure for Export
	Changing the Figure (Optional)
	Alter Visibility
	Change Background Color
	Alter Orientation and Size

	Exporting the Figure
	WebFigure
	Image Data

	Cleaning Up the Figure Window
	Modifying and Exporting Figure Data
	WebFigure
	Image Data

	Working with MATLAB Figure and Image Data
	For More Comprehensive Examples
	Working with Figures
	Getting a Figure From a Deployed Component

	Working with Images
	Getting Encoded Image Bytes from an Image in a Component
	.NET
	Getting a Buffered Image in a Component
	.NET
	Getting Image Data from a WebFigure
	.NET

	.NET Remoting
	What Is .NET Remoting?
	What Are Remotable Components?
	Benefits of Using .NET Remoting
	What’s the Difference Between WCF and .NET Remoting?

	Your Role in Building Distributed Applications
	.NET Remoting Prerequisites
	Selecting the Best Method of Accessing Your Component: MWArray A
	Using Native .NET Structure and Cell Arrays

	Creating a Remotable .NET Component
	Building a Remotable Component Using the Deployment Tool
	Preparing to Build Your Remote Component with deploytool
	Build Your Remote Component with deploytool

	Building a Remotable Component Using the mcc Command
	Files Generated by the Compilation Process

	Enabling Access to a Remotable .NET Component
	Using the MWArray API
	Why Use the MWArray API?
	Coding and Building the Hosting Server Application and Configura
	Coding and Building the Client Application and Configuration Fil
	Starting the Server Application
	Starting the Client Application

	Using the Native .NET API: Magic Square Example
	Why Use the Native .NET API?
	Coding and Building the Hosting Server Application and Configura
	Coding and Building the Client Application and Configuration Fil
	Starting the Server Application
	Starting the Client Application

	Using the Native .NET API: Cell and Struct Example
	Why Use the .NET API With Cell Arrays and Structs?
	Building Your Component
	The Native .NET Cell and Struct Example
	Coding and Building the Client Application and Configuration Fil
	Starting the Server Application
	Starting the Client Application
	Coding and Building the Client Application and Configuration Fil

	Troubleshooting
	Troubleshooting the Build Process
	Viewing the Latest Build Log
	Generating Verbose Output

	Failure to Find a Required File
	Diagnostic Messages
	Enhanced Error Diagnostics Using mstack Trace

	Reference Information
	Requirements for the MATLAB Builder NE Product
	System and Compiler Requirements
	Path Modifications Required for Accessibility
	Limitations and Restrictions
	Using CGI Scripts

	Data Conversion Rules
	Managed Types to MATLAB Arrays
	MATLAB Arrays to Managed Types
	.NET Types to MATLAB Types
	Character and String Conversion
	Unsupported MATLAB Array Types

	Overview of Data Conversion Classes
	Overview
	Returning Data from MATLAB to Managed Code
	Example of MWNumericArray in a .NET Application
	Interfaces Generated by the MATLAB Builder NE Product
	Single Output API
	Standard API
	feval API

	MWArray Class Specification
	Application Deployment Terms
	Glossary of Deployment Product Terms

	Function Reference
	Creating and Installing COM Components
	Building a Deployable COM Component
	Packaging a Deployable COM Component
	Add-in and COM Component Registration

	Embedded CTF Archives
	Using the Command-Line Interface
	Installing COM Components on a Target Computer

	Programming with COM Components Created by the MATLAB Builder NE
	General Techniques
	Registering and Referencing the Utility Library
	Creating an Instance of a Class in Microsoft Visual Basic
	Advantages and Disadvantages
	CreateObject Function
	Microsoft Visual Basic New Operator
	Advantages of Each Technique
	Declaring a Reusable Class Instance

	Calling the Methods of a Class Instance
	Standard Mapping Technique
	Variant
	Examples of Passing Input and Output Parameters

	Calling a COM Object in a Visual C++ Program
	Using the MATLAB Builder NE Product to Create the Object
	Using the Component in a Visual C++ Program

	Using a COM Component in a .NET Application
	Overview
	Program Listings
	C# Example
	Visual Basic Example

	Adding Events to COM Objects
	MATLAB Language Pragma
	Using a Callback with a Microsoft Visual Basic Event
	iterate.m
	progess.m

	Passing Arguments
	Overview
	Creating and Using a varargin Array in Microsoft Visual Basic Pr
	Creating and Using varargout in Microsoft Visual Basic Programs
	Passing an Empty varargin From Microsoft Visual Basic Code
	Passing an Empty varargin From VBA Code

	Using Flags to Control Array Formatting and Data Conversion
	Overview
	Array Formatting Flags
	Using Array Formatting Flags
	Modifying Output Format
	Output Format in VBScript

	Using Data Conversion Flags
	Special Flags for Some Microsoft Visual Basic Types

	Using MATLAB Global Variables in Microsoft Visual Basic
	Blocking Execution of a Console Application That Creates Figures
	MCRWaitForFigures
	Using MCRWaitForFigures to Block Execution

	MCR Run-Time Options
	What MCR Options are Supported for COM?
	How Do I Specify MCR Options?

	Sharing an MCR Instance in COM or Java Applications
	What Is a Singleton MCR?
	Advantages and Disadvantages of Using a Singleton
	When You Should Use a Singleton
	When You Might Avoid Using a Singleton

	Which Products Support Singleton MCR and How Do I Create a Singl

	Obtaining Registry Information
	Handling Errors During a Method Call

	Using COM Components in Microsoft Visual Basic Applications
	Magic Square Example
	Example Overview
	Creating the MATLAB File
	Using the Deployment Tool to Create and Build the Project
	Creating the Microsoft Visual Basic Project
	Creating the User Interface
	Creating the Executable in Microsoft Visual Basic
	Testing the Application
	Packaging the Component

	Creating an Excel Add-in: Spectral Analysis Example
	Example Overview
	Building the Component
	Integrating the Component with VBA
	Creating the Main VBA Code Module

	Creating the Microsoft Visual Basic Form
	Adding the Spectral Analysis Menu Item to Microsoft Excel
	Saving the Add-in
	Testing the Add-in
	Creating the Data
	Running the Test

	Packaging and Distributing the Add-in

	Univariate Interpolation Example
	Example Overview
	Using the Deployment Tool to Create and Build the Component
	Using the Component in Microsoft Visual Basic
	Creating the Microsoft Visual Basic Form

	Matrix Calculator Example
	Example Overview
	Building the Component
	Using the Component in Microsoft Visual Basic
	Creating the Microsoft Visual Basic Form

	Curve Fitting Example
	Example Overview
	Building the Component
	Building the Project
	Using the Component in Microsoft Visual Basic
	Creating the Microsoft Visual Basic Form

	Bouncing Ball Simulation Example
	Example Overview
	Building the Component
	Using the Component in Microsoft Visual Basic
	Creating the Microsoft Visual Basic Form

	How the MATLAB Builder NE Product Creates COM Components
	Overview of Internal Processes
	How Is a MATLAB Builder NE Component Created?
	Code Generation
	Create Interface Definitions
	C++ Compilation
	Linking and Resource Binding
	Registration of the DLL

	Component Registration
	Self-Registering Components
	Globally Unique Identifier
	Versioning

	Data Conversion
	Conversion Rules
	Array Formatting Flags
	Data Conversion Flags
	CoerceNumericToType
	InputDateFormat
	OutputAsDate As Boolean
	DateBias As Long

	Calling Conventions
	Producing a COM Class
	IDL Mapping
	Microsoft Visual Basic Mapping

	Utility Library for Microsoft COM Components
	Referencing Utility Classes
	Utility Library Classes
	Class MWUtil
	Sub MWInitApplication(pApp As Object)
	Sub MWInitApplicationWithMCROptions(pApp As Object, [mcrOptionLi
	Function IsMCRJVMEnabled() As Boolean
	Function IsMCRInitialized() As Boolean
	Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
	Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean
	Sub MWDate2VariantDate(pVar)

	Class MWFlags
	Property ArrayFormatFlags As MWArrayFormatFlags
	Property DataConversionFlags As MWDataConversionFlags
	Sub Clone(ppFlags As MWFlags)

	Class MWStruct
	Sub Initialize([varDims], [varFieldNames])
	Property Item([i0], [i1], ..., [i31]) As MWField
	Property NumberOfFields As Long
	Property NumberOfDims As Long
	Property Dims As Variant
	Property FieldNames As Variant
	Sub Clone(ppStruct As MWStruct)

	Class MWField
	Property Name As String
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppField As MWField)

	Class MWComplex
	Property Real As Variant
	Property Imag As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppComplex As MWComplex)

	Class MWSparse
	Property NumRows As Long
	Property NumColumns As Long
	Property RowIndex As Variant
	Property ColumnIndex As Variant
	Property Array As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppSparse As MWSparse)

	Class MWArg
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppArg As MWArg)

	Enumerations
	Enum mwArrayFormat
	Enum mwDataType
	Enum mwDateFormat

	Examples
	Magic Square Example for .NET
	Using Load and Save
	Creating a .NET Component Namespace
	Adding Multiple Classes to a Component
	Automatic Casting to Types
	Multidimensional Array Processing in MATLAB and .NET
	Native Data Conversion
	Return Value Handling
	Using functions engOpen and engEvalString from the MATLAB Engine
	Handling Data
	Initializing and Populating a Jagged Array
	Using WaitForFiguresToDie to Block Execution
	Sample Applications (C#)
	Sample Applications (Visual Basic .NET)
	Sample Applications (Visual Basic)
	Sample Applications (Java)
	Using the MCR Data Interface
	Supplying Run-Time Configuration Information for Parallel Comput
	Implementing a Type-Safe Interface
	Deploying a WCF-Based Component
	Quick Start to Implementing a WebFigure
	Working with Functions that Return a Single WebFigure as the Fun
	Working With Functions That Return Multiple WebFigures In an Arr
	Attaching a WebFigure
	Referencing a WebFigure Attached to the Local Server
	Referencing a WebFigure Attached to a Remote Server
	Using Global Assembly Cache (Global.asax) to Create WebFigures a
	Creating and Modifying a MATLAB Figure
	Working with MATLAB Figures
	Working with Images
	Building a Remotable Component Using the Deployment Tool
	Building a Remotable Component Using the mcc Command
	Using Native .NET Structure and Cell Arrays
	COM Components
	Utility Library Classes for COM Components
	Deploying .NET Components With the F# Programming Language

	Deploying .NET Components With the F# Programming Language
	The Magic Square Example Using F#
	Prerequisites
	Step 1: Build the Component
	Step 2: Integrate the Component Into an F# Application
	The F# Magic Square Program
	Step 3: Deploy the Component

	Index

	tables
	 Application Deployment Roles, Goals, and Tasks
	MATLAB Programmer
	Key Tasks for the MATLAB Programmer
	.NET Developer
	Key Tasks for the .NET Developer
	MATLAB Programmer
	MATLAB Suite of Application Deployment Products
	Information on CTF Archive Embedding/Extraction and Component Ca
	MATLAB Programmer
	.NET Developer
	.NET Developer
	.NET Developer
	.NET Developer
	Addition.prj
	Multiplication.prj
	WebFigures for .NET Deployment Roles, Responsibilities, and Task
	GetHTMLEmbedString API Parameters
	MATLAB Programmer
	Front-End Web Developer
	.NET Remoting Deployment Roles, Responsibilities, and Tasks
	Features of the MWArray API Compared With the Native .NET API
	MATLAB Programmer
	.NET Developer
	.NET Developer
	Diagnostic Messages and Suggested Solutions
	Conversion Rules: Managed Types to MATLAB Arrays
	Conversion Rules: MATLAB Arrays to Managed Types
	Conversion Results: .NET Types to MATLAB Types
	Conversion Rules: MATLAB Numeric Types to .NET Types
	Conversion Rules: MATLAB Char Arrays to .NET Types
	Conversion Rules: MATLAB Logical Arrays to .NET Types
	Conversion Rules: Cell Array to .NET Types
	Conversion Rules: Struct to .NET Types
	Conversion Rules: .NET Objects in MATLAB to .NET Native Objects
	Registry Information Returned by componentinfo
	Using the Command Line to Create COM Components
	VARIANT Type Codes Supported
	MATLAB to COM VARIANT Conversion Rules
	COM VARIANT to MATLAB Conversion Rules
	Array Formatting Flags
	Array Formatting Rules for Input Arrays
	Array Formatting Rules for Output Arrays
	Conversion Rules for Input Dates
	mwArrayFormat Values
	mwDataType Values
	mwDateFormat Values

